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Abstract— An Cyber-Physical Systems (CPS) in healthcare offer immense potential for personalized medicine and remote 

monitoring, but raise critical concerns regarding temporal privacy. This paper explores the challenges of long-term data 

retention in medical CPS and proposes a privacy-preserving framework using data decay mechanisms. We address the dynamic 

nature of data sensitivity by employing an exponential decay algorithm, which gradually reduces data granularity over time, 

balancing utility and privacy. We further discuss the importance of classifying data based on sensitivity levels and propose a 

high-level architectural design for implementing temporal privacy preservation in medical CPS. Future directions include 

adaptive decay rates, personalized decay policies, integration with federated learning, and blockchain-based auditing. These 

advancements aim to create a robust and trustworthy framework that protects patient privacy while enabling the full potential of 

medical CPS. By prioritizing temporal privacy, the responsible and ethical deployment of these transformative methods can be 

ensured effectively. 

 

Keywords—   Trust, Privacy, Cyber Physical Systems, Attack, Data Decay, Security 

 

Graphical Abstract-  

 
 

 Tailors privacy policies to individual sensitivity needs. 

 Balances high utility with enhanced privacy through 

adaptability. 

 Enhances utility by integrating decentralized learning 

with privacy trade-offs. 

 

1. Introduction  

Cyber-Physical Systems (CPS) represents a convergence of 

physical and computational processes, enabling real-time 

monitoring and control of infrastructure. These systems are 

pivotal in modernizing critical sectors like smart cities, 

healthcare, and industrial IoT. In smart cities, CPS manages 

traffic flow, energy grids, and waste disposal, enhancing 

efficiency and sustainability [1]. In healthcare, they enable 

remote patient monitoring and robotic surgeries, improving 

patient outcomes. Industrial IoT leverages CPS for predictive 

maintenance, process automation, and optimized supply 

chains, boosting productivity and reducing downtime. 

However, the pervasive data collection inherent in CPS raises 

significant data privacy concerns. These systems gather 

sensitive information about individuals and processes, 

including location, health records, and operational data. 

Unauthorized access or misuse of this data can lead to 

identity theft, surveillance, and economic espionage. The 

interconnected nature of CPS amplifies these risks, as a single 

vulnerability can compromise entire systems. Specifically, 

the temporal aspect of data privacy in CPS is critical. Data 

collected at a specific time can reveal sensitive patterns and 
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behaviors, even if anonymized. For instance, location data 

over time can reveal a person’s routine, while sensor data 

from industrial processes can expose proprietary techniques. 

Traditional privacy methods, such as anonymization and 

encryption, may not adequately address the dynamic nature 

of CPS data [2]. This necessitates exploring temporal privacy 

preservation using data decay mechanisms. These 

mechanisms involve gradually reducing the granularity or 

accuracy of data over time, making it less sensitive while 

retaining its utility for analysis. For example, location data 

could be aggregated into larger areas or reduced to less 

frequent updates over time. Similarly, sensor data could be 

averaged or blurred, decreasing its precision [3]. This 

approach is particularly relevant in CPS, where data often has 

a limited shelf life. For instance, real-time traffic data is 

crucial for immediate traffic management but less relevant 

after a few hours. 

By implementing data decay, CPS can balance the need for 

data-driven insights with the imperative to protect individual 

and organizational privacy. This approach helps mitigate the 

risks associated with long-term data storage and analysis, 

ensuring that the benefits of CPS are realized without 

compromising fundamental privacy rights.    

    1.2 Problem Statement 

 The longevity of data retention in Cyber-Physical Systems 

(CPS) poses a significant challenge to privacy. Unlike 

traditional data systems, CPS often continuously collect and 

store vast amounts of information over extended periods. 

This long-term retention amplifies privacy risks, as data that 

may seem innocuous initially can reveal sensitive patterns 

and insights when analyzed over time. The accumulation of 

historical data creates a rich target for malicious actors, 

increasing the potential for data breaches and misuse. The 

inherent nature of CPS, where physical processes are 

intertwined with digital systems, further exacerbates these 

risks. Data from sensors, actuators, and connected devices 

can reveal intimate details about individuals, industrial 

processes, and critical infrastructure. For example, in smart 

cities, long-term traffic data can expose commuting patterns 

and daily routines, while energy consumption data can reveal 

occupancy patterns and lifestyle habits. In industrial settings, 

detailed sensor data can expose proprietary manufacturing 

processes and trade secrets.A critical need exists for solutions 

that effectively balance data utility and privacy preservation 

over time. While data is essential for optimizing system 

performance, improving efficiency, and enabling data-driven 

decision-making, it must be protected from unauthorized 

access and misuse. This balance is particularly challenging in 

CPS, where real-time data analysis is often crucial for 

immediate action. 

Consider a Medical CPS scenario involving a continuous 

glucose monitoring (CGM) system. This system continuously 

collects and transmits glucose level data to a cloud-based 

platform for analysis and remote monitoring. Over time, this 

data accumulates, creating a comprehensive health profile for 

the patient. While this data is invaluable for personalized 

diabetes management, it also poses significant privacy risks. 

For example, long-term CGM data could reveal sensitive 

information about a patients lifestyle, dietary habits, and 

medication adherence [4]. If this data were to fall into the 

wrong hands, it could be used for discriminatory purposes, 

such as denying insurance coverage or employment 

opportunities. Moreover, the aggregation of CGM data from a 

large patient population could reveal population-level health 

trends, which could be exploited for targeted advertising or 

political manipulation. To address these challenges, a 

solution that incorporates data decay mechanisms could be 

implemented. In this scenario: 

 Short-term, high-resolution data: For immediate medical 

intervention, the system would retain high-resolution glucose 

data for a short period (e.g., a few days). This allows 

healthcare providers to respond quickly to critical 

fluctuations. 

 Medium-term, aggregated data: After a few days, the data 

could be aggregated into hourly or daily averages, reducing 

its granularity while still providing valuable insights into 

long-term trends. This aggregated data could be retained for a 

longer period (e.g., several months) for trend analysis and 

treatment planning. 

 Long-term, generalized data: After several months, the data 

could be further generalized, such as by categorizing glucose 

levels into broad ranges (e.g., low, normal, high). This 

generalized data could be retained indefinitely for research 

and population health studies, while minimizing the risk of 

individual identification [5]. 

 Customized Differential privacy: Noise could be added to 

the data before aggregation, ensuring that individual data 

points cannot be precisely reconstructed. 

By implementing such a data decay strategy, the Medical 

CPS can maintain the utility of the CGM data for clinical and 

research purposes while mitigating the privacy risks 

associated with long-term data retention. This approach 

ensures that the benefits of CPS are realized without 

compromising the fundamental right to privacy. 

 

2. Related Work  

2.1 Privacy Concerns in Cyber-Physical Systems 

Cyber-Physical Systems (CPS) face a spectrum of privacy 

challenges, including surveillance, data breaches, and 

unauthorized access. Surveillance arises from the constant 

monitoring inherent in CPS, where data collection can be 

used to track individuals and their activities[6]. Data 

breaches, a constant threat, expose sensitive information to 

malicious actors, leading to identity theft and misuse. 

Unauthorized accesses, whether through vulnerabilities or 

insider threats, compromises data integrity and 

confidentiality. Existing privacy-preserving techniques offer 

some protection, but also possess limitations. Anonymization, 

while removing direct identifiers, often fails when combined 

with auxiliary data, leading to re-identification. Differential 

privacy adds noise to data, ensuring that individual 

contributions remain obscured. However, it can reduce data 
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utility, especially for complex analyses. Encryption protects 

data in transit and at rest, but doesn’t prevent access during 

processing. Access control mechanisms limit who can access 

data, but are vulnerable to breaches and insider threats. 

Traditional methods struggle to address the temporal aspect 

of CPS data, where patterns over time reveal sensitive 

information. For example, location data, even when 

anonymized, can expose routines and habits when analyzed 

over extended periods [7]. Therefore, there’s a need for 

dynamic privacy mechanisms that adapt to the evolving 

sensitivity of data over time, like data decay. 

2.2 Temporal Privacy Preservation 

Temporal privacy refers to the safeguarding the users private 

information revealed through the analysis of data over time. It 

acknowledges that data, even when anonymized or 

aggregated, can expose patterns and behaviors when viewed 

across a timeline. This is particularly crucial in Cyber-

Physical Systems (CPS), where continuous monitoring 

generates rich temporal datasets. Protecting temporal privacy 

ensures that individual’s routines, habits, and sensitive 

activities remain confidential, even when data is aggregated 

or anonymized [8]. The importance of temporal privacy 

stems from the increasing ability to extract meaningful 

insights from time-series data. Without proper safeguards, 

seemingly innocuous data points can be combined to 

reconstruct sensitive narratives. For instance, location data 

over time can reveal daily routines, social interactions, and 

even political affiliations. Medical data can expose health 

trends and lifestyle habits. Industrial sensor data can reveal 

production patterns and vulnerabilities. Prior work on time-

based privacy techniques exists in various domains. In 

location privacy, techniques like k-anonymity and differential 

privacy have been extended to consider temporal correlations. 

These methods often involve adding noise or generalizing 

location data over time to obscure individual trajectories[9]. 

In database privacy, techniques like time-series 

anonymization and data perturbation have been developed to 

protect sensitive patterns in temporal data. In the domain of 

video surveillance, methods for blurring or removing objects 

over time have been explored to protect individual identities 

[10]. These techniques often involve concepts like data 

decay, where data granularity is reduced over time, or data 

perturbation, where noise is added to obscure temporal 

patterns. While these techniques offer valuable insights, their 

application in CPS requires careful consideration of the 

unique characteristics of these systems, such as real-time 

constraints, diverse data types, and the tight coupling between 

physical and digital processes [11]. Adapting and extending 

these techniques to the specific needs of CPS is essential for 

ensuring robust temporal privacy. 

2.3 Data Decay Mechanisms in Privacy Preservation 

Data decay is a privacy-enhancing technique that gradually 

reduces the precision or detail of data over time, minimizing 

its sensitivity while retaining its utility [12]. The core idea is 

that data value and sensitivity often decrease as time passes. 

Several existing approaches contribute to temporal privacy, 

incorporating elements of data decay. Data reduction 

techniques involve summarizing or aggregating data, 

reducing its granularity. For example, instead of storing 

precise GPS coordinates every second, location data could be 

aggregated into hourly or daily averages, blurring individual 

movements. Anonymization techniques, when applied over 

time, can involve generalizing data points [13]. For instance, 

instead of storing a precise birthdate, a birth year or age range 

could be used. Additionally, data can be suppressed after a 

certain period, removing it entirely. Adaptive noise injection, 

a key component of differential privacy, involves adding 

controlled noise to data to obscure individual contributions. 

This noise can be adjusted over time, increasing as data ages 

or sensitivity decreases. For instance, in a smart meter 

system, real-time energy consumption data might have 

minimal noise, while older data could have significantly more 

noise added, making it harder to link specific consumption 

patterns to individual households [14]. These techniques, 

when combined, create a dynamic approach to temporal 

privacy. Consider a medical device tracking heart rate: 

Initially, precise heart rate data is vital for immediate 

responses. After a week, daily averages are sufficient for 

trend analysis. After a year, only general health metrics might 

be retained, greatly reducing privacy risks while maintaining 

long-term health insights [15]. 

 

3. Proposed Framework for Temporal Privacy 

Preservation in CPS 

3.1 Overview of the Proposed Framework 

High-level architecture of temporal privacy preservation 

using data decay mechanisms in CPS: 

This architecture focuses on a medical CPS scenario, such as 

a remote patient monitoring system, using data decay to 

preserve temporal privacy. 

Components: 

1. Sensor/Device Layer: Medical sensors (e.g., heart rate 

monitors, glucose monitors) collect patient data and 

transmit it. 

2. Edge Processing Layer: Local processing units handle 

initial data filtering, basic analysis, and immediate alerts. 

3. Data Decay Engine: This core component implements the 

data decay policies, managing data transformations over 

time. 

4. Secure Storage: Stores data with varying levels of 

granularity and privacy. 

5. Access Control Module: Manages user access and data 

sharing permissions. 

6. Analytics & Reporting Module: Provides tools for data 

analysis and generating reports, respecting privacy 

constraints. 

7. User Interface: Allows patients and healthcare 

professionals to interact with the system. 

 

Stepwise Illustration: 

Step 1: Data Acquisition (Sensor/Device Layer) 
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Medical sensors continuously collect patient data (e.g., heart 

rate, blood pressure). 

The data is time stamped and transmitted to the Edge 

Processing Layer. 

Step 2: Edge Processing (Edge Processing Layer) 

The Edge Processing Layer performs real-time data filtering 

and basic analysis (e.g., detecting anomalies). 

Immediate alerts are generated for critical events. 

The processed data is forwarded to the Data Decay Engine. 

Step 3: Data Decay Application (Data Decay Engine) 

The Data Decay Engine applies predefined data decay 

policies based on time and data sensitivity. 

Short-term (e.g., first 24 hours): High-resolution data is 

stored for immediate medical intervention. 

Medium term (e.g., 1 week): The data is aggregated into 

hourly averages. 

Long-term (e.g. 1 month): Daily averages are kept. 

Very Long Term (e.g. 1 year): Data is generalized into broad 

categories (e.g., "normal range," "high range"). 

Differential privacy techniques (adding noise) are applied 

based on the decay level. 

Step 4: Secure Storage (Secure Storage) 

The data is stored in a secure database, with different levels 

of access control based on data granularity. 

Data is stored with the appropriate level of noise added. 

Data is stored with metadata that defines the decay level. 

Step 5: Access Control (Access Control Module) 

Access to data is controlled based on user roles and 

permissions. 

Healthcare professionals have access to more detailed data 

for recent time periods. 

Researchers have access to aggregated and anonymized data 

for long-term analysis. 

Patients have access to their own data, with clear indications 

of its decay level. 

Step 6: Analytics & Reporting (Analytics & Reporting 

Module) 

 Healthcare professionals can analyze patient data and 

generate reports. 

Analytics tools respect privacy constraints, ensuring that 

individual identities are protected. 

Trend reports are created using the aggregated data. 

Step 7: User Interaction (User Interface) 

Patients can monitor their health data and receive 

personalized recommendations. 

Healthcare professionals can access patient records and 

communicate with patients. 

The UI displays data with clear indication of its decay level. 

 

 
 

Figure 1. Medical data management process 

 

Few considerations: 

Policy Definition: Defining appropriate data decay policies is 

crucial and should involve input from healthcare 

professionals and privacy experts. 

Scalability: The architecture should be scalable to handle 

large volumes of data from multiple patients. 

Security: Given the sensitivity of patient data, strong security 

measures are paramount to prevent unauthorized access. 

Auditing: Formal inspections to be conducted regularly to 

verify compliance with privacy regulations. 

Flexibility: The system should be flexible enough to adapt to 

changing privacy requirements and technological 

advancements. 

3.2 Data Sensitivity and Privacy over Time 

Data sensitivity in Cyber-Physical Systems (CPS) is not 

static; it evolves over time. Real-time data, often crucial for 

immediate decision-making, tends to be highly sensitive. As 

data ages, its immediate relevance and sensitivity may 

decrease, although long-term analysis can still reveal valuable 

insights. This dynamic nature necessitates a flexible approach 

to privacy preservation. The sensitivity of data also depends 

heavily on the use case. Real-time medical alerts, for 

instance, require high-resolution data, making it extremely 

sensitive. Conversely, aggregated historical data used for 

population health studies may have lower sensitivity. 

Classifying data into different sensitivity levels allows for the 
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application of tailored privacy-preserving techniques [16]. 

This classification should consider factors like data type, time 

of collection, intended use, and potential risks. 

In below table 1 shows data classification based on sensitivity 

levels in a medical CPS context. 

Table 1. Classification of data types wrt to sensitivity level and data decay 

method 

 

Datatype Privacy 

requirements 

Data decay 

strategy 

Real-time ECG, 

Glucose level 

fluctuations, 

Immediate location 

during emergency 

call 

Highest: Real-time 

encryption, strict 

access control, 

minimal retention 

Minimal Decay; 

high resolution data 

retained for very 

short periods, then 

aggregated. 

Hourly blood 

pressure readings, 

daily medication 

adherence, detailed 

location history (last 

24 hours) 

High: Strong 

anonymization, 

limited access, 

differential privacy 

Aggregation to 

hourly averages, 

limited detail 

retention, noise 

injection. 

Daily weight trends, 

weekly activity logs, 

monthly sleep 

patterns 

Moderate: 

Aggregation, 

generalization, 

access control based 

on roles 

Aggregation to 

daily/weekly 

averages, 

generalization of 

specific values, 

higher noise 

addition. 

Annual health 

summaries, 

generalized 

population health 

data, de-identified 

research datasets. 

Low: Generalization, 

anonymization, 

broad access with 

restrictions 

Aggregation to 

yearly summaries, 

broad 

categorization, 

heavy noise 

addition, potential 

complete 

suppression of 

identifying details. 
 

4. Implementation of Data Decay Mechanisms 

4.1 Decay Algorithm 

Exponential Decay Algorithm for Privacy Preservation in 

Medical CPS 

This algorithm uses an exponential decay function to reduce 

the granularity of medical data over time, preserving privacy. 

Mathematical Model: 

The decay function is defined as: 

   

                                                                                     (1) 

Where: 

 Granularity (t): Granularity of data at time t. 

 Initial Granularity: Initial granularity of the data (e.g., raw 

sensor data, precise values). 

 e: Eulers number (approximately 2.71828). 

 λ: Decay rate constant (determines how quickly data decays). 

 t: Time elapsed since data collection. 

Algorithm: 

Input Variables: 

rawData: The original medical data (e.g., heart rate, glucose 
level). 

timestamp: The time when the data was collected. 

currentTime: The current time. 

initialGranularity: The initial level of data detail (e.g., 1 for raw, 
0.5 for hourly average, 0.1 for daily average). 

decayRate: The decay rate constant (λ). 

Output Variables: 

decayedData: The data with reduced granularity. 

Steps: 

1.  Calculate Time Elapsed: 

     timeElapsed = currentTime – timestamp         (2) 

2.  Calculate Granularity: 

 (3) 

3.  Apply Data Transformation: 

If  granularity is close to 1 (high granularity): 

    decayedData = rawData (No significant change).  (4) 

    If granularity is between 0.5 and 1 (medium granularity): 

        Aggregate the data: 

 Example: if rawData is heart rate, calculate hourly average. 

             decayedData = Aggregate(rawData, hourly)  (5) 

     If granularity is between 0.1 and 0.5 (low granularity): 

         Aggregate the data: 

      Example: if rawData is heart rate, calculate daily average. 

        decayedData = Aggregate(rawData, daily)   (6) 

     If `granularity` is below 0.1 (very low granularity): 

         Generalize the data: 

 Example: if rawData is glucose level, categorize into "low," 
"normal," or "high." 

      decayedData = Generalize(rawData, categories)  (7) 

4.  Add Differential Privacy Noise (Optional): 

     Add noise proportional to the inverse of the granularity. 

     decayedData = decayedData + Noise(1/granularity) (8) 

5.  Return decayedData: 

     Store the decayed data with the corresponding timestamp. 

# Example usage 

rawData = 120 #heart rate 

timestamp = 1678886400 #some epoch time 

currentTime = 1678972800 #some later epoch time 

initialGranularity = 1.0 

decayRate = 0.0001 
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decayedData = exponential_decay(rawData, timestamp, 
currentTime, initialGranularity, decayRate) 

print(decayedData) 

 

Important considerations: 

Decay Rate (`λ`): This parameter controls the speed of decay 

and needs to be carefully chosen based on data sensitivity and 

use case. 

Aggregation/Generalization Functions: These functions need 

to be tailored to the specific type of medical data. 

Differential Privacy: The noise addition should be carefully 

calibrated to balance privacy and utility. 

Storage: The system should store both the decayed data and 

the metadata (timestamp, granularity) for future analysis. 

 

5. Results and Discussion 

Dataset for Evaluating Exponential Decay Algorithm in 

Medical CPS 

 

Dataset Name: Temporal Medical Data (TMD) 

 

Description: The TMD dataset simulates continuous medical 

data collected from a remote patient monitoring system, 

focusing on cardiovascular health. It includes synthetic time-

series data for heart rate, blood pressure (systolic and 

diastolic), and activity levels, mimicking real-world 

fluctuations and potential anomalies. The dataset is designed 

to evaluate the effectiveness of the exponential decay 

algorithm in balancing data utility and privacy preservation 

over time. 

 

Dataset Structure: 

 

The dataset is structured as a CSV file with the following 

columns: 

 PatientID: Unique identifier for each patient (e.g., P001, 

P002, ...). 

 Timestamp: Unix timestamp representing the time of data 

collection. 

 HeartRate: Heart rate in beats per minute (bpm). 

 SystolicBP: Systolic blood pressure in mmHg. 

 DiastolicBP: Diastolic blood pressure in mmHg. 

 ActivityLevel: Activity level, represented as a numerical 

value (e.g., 0-100, where 0 is resting and 100 is high 

activity). 

 AnomalyFlag: Binary flag indicating the presence of an 

anomaly (1 for anomaly, 0 for normal). 

 DataSensitivity: a value from 1 to 4 indicating the 

sensitivity of the data. 

 

Dataset Characteristics: 

Temporal Data: The data is time-series, reflecting continuous 

monitoring. 

 

Synthetic Data: The data is synthetically generated to 

simulate real-world medical data, allowing for controlled 

experiments. 

 

Anomaly Injection: Anomalies (e.g., sudden heart rate spikes, 

blood pressure fluctuations) are injected into the data to 

assess the algorithms ability to preserve critical information. 

Varying Sensitivity: The Data Sensitivity column is added to 

simulate different data sensitivity levels. Level 1 being the 

most sensitive, and level 4 the least. 

 

Data Volume: The dataset should include data for a sufficient 

number of patients and time periods to allow for meaningful 

analysis. For example, data for 100 patients over a year, with 

measurements taken every minute. 

 

   1. Data Decay Visualization: 

 

Fig.2. Time series plot of raw versus decayed data 

Figure 2 illustrates the dynamic nature of the data decay rate 

over time. The plot demonstrates an inverse relationship: as 

time progresses, the rate at which data decays diminishes. 

This slowing decay process implies that sensitive information 

is retained in a more detailed state for a longer duration in the 

initial periods, offering higher utility when the data is 

potentially most relevant. Subsequently, the slower decay 

ensures that the sensitive data is gradually obscured over 

extended periods, ultimately enhancing the overall degree of 

privacy preservation by limiting long-term identifiability. 

2. Granularity vs. Time Plots: 

Figure 3 illustrates that as the data decay rate slows down 

(decreases) and time progresses, the granularity or level of 

detail within the data diminishes. This implies that with a 

slower decay, information is retained for a longer period but 

in a progressively coarser form. The plot highlights how the 

fineness of data representation degrades over time under 

different decay speeds, impacting data utility for detailed 

analysis. 
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Fig.3 Granularity versus time for different decay rates 

3. Impact of noise added at different decay levels 

 

Fig.4 Effect of noise added at various decay levels 

Figure 4 demonstrates the relationship between the level of 

data decay and the impact of added noise. The visualization 

indicates that as the decay rate increases, a greater degree of 

noise is inherently introduced into the data. This automatic 

noise addition, while enhancing privacy by obscuring original 

data points, consequently affects the data's utility. The plot 

highlights the trade-off between privacy gains through 

increased decay and the potential loss of data fidelity due to 

the accompanying noise. Researchers can analyze this trade-

off to determine optimal decay levels for balancing privacy 

and utility in medical CPS. 

4. Privacy Evaluation: 

 

Fig.5. Privacy improvement over time 

Figure 5 presents a privacy evaluation by illustrating the 

decline in re-identification success rate as the data decay rate 

increases over time. This downward trend demonstrates that a 

higher decay rate effectively reduces the risk of linking 

anonymized data back to individual patients, thus enhancing 

privacy. The plot helps establish a crucial baseline, indicating 

the minimum decay rate required to achieve a desired level of 

privacy preservation in the medical CPS context. Researchers 

can utilize this baseline to configure their systems for optimal 

privacy protection. 

Heatmaps of Data Sensitivity over time: 

 

Fig.6 Degree of data sensitivity over time 

In the figure 6, the heatmap visualizes the impact of the decay 

rate on various data features over a month. The color 

intensity indicates the extent of decay for each feature. 

Features identified as highly sensitive to patient privacy 

exhibit a rapid decay (indicated by a quicker shift in color), 

reflecting the necessity of a high decay rate to effectively 

obscure their original values and safeguard sensitive 

information over time. This allows for targeted privacy 

preservation based on feature sensitivity. 

3. Data Utility Evaluation: 

 

Fig.7 Anomaly Detection Plots 

The figure 7 represents the data utility evaluation in terms of 

anomalies. It can be observed that with lower data decay rate 

the chances of identifying an anomaly is almost same as that 

without data decay, so chances of identifying the correct data 

is difficult with data decay aspect. This approach saves the 

actual private data of a patient and the attacker thinks the 
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actual data is same even with introduction of data decay 

feature. 

 

Fig.8 Anomaly detection accuracy over time 

Figure 8 displays the decayed data, with detected anomalies 

clearly marked. The decreasing trend of these highlighted 

anomalies over time suggests the proposed method's 

increasing robustness. As data ages and decays, the algorithm 

effectively reduces the impact of potential anomalies, 

indicating its ability to mitigate false positives and enhance 

the reliability of anomaly detection in temporal medical CPS 

data. 

Scalability Plots: 

 

Fig.9 Scalability of decay processing algorithm 
 

Figure 9 illustrates the algorithm's scalability by plotting its 

performance against increasing data volume. The observed 

linear growth in computational complexity indicates efficient 

scaling. As the number of data records grows, the algorithm's 

processing time increases proportionally, demonstrating its 

ability to handle larger datasets without a significant 

performance bottleneck. This linear scalability is a crucial 

advantage for real-world medical CPS applications dealing 

with continuous and expanding data streams. 

 

5. Policy Evaluation 

Comparative Plots of Different Decay Policies: 

 
Fig.10 Comparative analysis of different decay policies 

Figure 10 visually presents how different decay rate constants 

or adaptive policies affect data sensitivity over time. By 

overlaying these decay patterns, researchers can directly 

compare the effectiveness of each approach in preserving 

temporal privacy. This visual comparison aids in 

understanding how quickly data utility diminishes under 

different strategies, facilitating informed decisions on optimal 

decay parameters for the specific medical CPS application. 

6.  Future Directions 
The exponential decay algorithm, while effective, can be 

further enhanced to address the evolving complexities of 

medical CPS and privacy concerns. In below few future 

directions are discussed: 

1.  Adaptive Decay Rate (λ): The current algorithm uses a 

fixed decay rate. However, data sensitivity can fluctuate 

based on patient conditions, external events, or evolving 

medical knowledge. Future iterations should incorporate 

adaptive decay rates. This could involve: 

Real-time patient risk assessment: If a patient’s condition 

deteriorates, the decay rate could be reduced, preserving 

higher-resolution data for longer. 

External event triggers: If a pandemic or environmental 

hazard occurs, the decay rate for relevant data (e.g., 

respiratory data) could be temporarily adjusted [17]. 

Machine learning-based prediction: ML models could predict 

data sensitivity based on historical patterns and patient 

demographics, dynamically adjusting the decay rate [18]. 

This allows the system to respond dynamically to changing 

conditions, and provide more accurate and timely information 

when needed. 

2.  Personalized Decay Policies: Instead of a one-size-fits-all 

approach, future algorithms should enable personalized decay 

policies. This could involve: 

Patient preferences: Patients could specify their desired level 

of data retention and privacy. 
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Healthcare provider recommendations: Physicians could 

tailor decay policies based on individual patient needs and 

treatment plans. 

Dynamic policy updates: The system could allow for easy 

updates to decay policies as patient conditions or preferences 

change. 

Such personalization enhances patient autonomy and ensures 

that data is handled in a way that aligns with individual 

needs. 

3.  Federated Learning Integration: To preserve privacy 

during model training, the algorithm could be integrated with 

federated learning [19-20]. This would enable: 

Decentralized model training: Models could be trained on 

local patient data without sharing raw data with a central 

server. 

Privacy-preserving model updates: Only model updates, not 

raw data, would be shared, further enhancing privacy. 

Improved model accuracy: Federated learning can leverage 

data from a larger patient population, leading to more 

accurate and robust models. 

This approach would allow for the development of advanced 

analytics and predictive models while minimizing privacy 

risks. 

4.  Blockchain-Based Data Auditing: To ensure data integrity 

and transparency, the algorithm could be integrated with 

blockchain technology [21-22]. This would enable: 

Immutable audit trails: All data transformations and access 

logs would be recorded on a blockchain, creating an 

immutable record. 

Enhanced data provenance: The origin and history of data 

could be easily traced, ensuring data integrity [23]. 

Improved accountability: Blockchain technology can enhance 

accountability and trust in data management. 

By incorporating blockchain, the system can provide a high 

level of transparency and accountability, ensuring that data is 

handled responsibly and ethically. 

  7. Conclusion 

The imperative of temporal privacy preservation in medical 

CPS is underscored by the inherent risks associated with 

continuous data acquisition. While the exponential decay 

algorithm offers a foundational approach for dynamically 

managing data sensitivity, the evolving landscape of medical 

CPS necessitates more sophisticated solutions. Future 

advancements must integrate adaptive decay rates to enable 

real-time responsiveness to fluctuating patient health and 

external factors. Personalized policies will empower patients 

and clinicians with granular control over data management, 

fostering individual autonomy and trust. The incorporation of 

federated learning promises privacy-preserving collaborative 

model training across distributed datasets, unlocking the 

potential for broader medical insights without compromising 

individual data. Furthermore, leveraging blockchain 

technology will ensure immutable data integrity and 

transparent auditing trails, bolstering confidence in the 

system's security and accountability. The promising trajectory 

of temporal privacy preservation in medical CPS opens 

compelling avenues for future research and development. 

One future direction involves exploring hybrid privacy-

preserving techniques that seamlessly blend temporal decay 

with differential privacy or homomorphic encryption to 

achieve multi-layered security. Investigating the integration 

of explainable AI (XAI) within these frameworks is crucial to 

ensure transparency and build trust in automated decision-

making processes based on temporally sensitive data. 

Research into secure multi-party computation (SMPC) could 

facilitate collaborative analysis of time-varying medical data 

across institutions without revealing raw information. 

Addressing the scalability and computational overhead 

associated with these advanced techniques in resource-

constrained medical CPS environments will also be a critical 

focus. Ultimately, future efforts should strive towards 

creating a holistic and user-centric temporal privacy 

framework that not only safeguards sensitive medical 

information but also actively contributes to improved patient 

outcomes and advancements in healthcare innovation. 
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