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Abstract— The target when using models to analyse results of biogas yield from manure or similar substrate is mostly to 

determine their kinetic parameters, which help significantly in knowing the bioreactor behavior and efficiency. This work 

aims at utilizing experimental biogas data obtained at 25, 30, 35, 40 and 45℃ to estimate these parameters, including the 

biogas potential of liquid manure from existing biogas models, first and second order biogas rate equations and the basic 

arithmetic equations using Excel Solver coupled with POLYMATH by regression. Best models are Cone, Proposed model, 

Transference, Logistic and Modified Gompertz as they give high coefficient of determination and fits the measured biogas 

yield data at 25-45℃. Estimated biogas potential from Modified Gompertz model ranges from 7143-13584 mL/gVS; 

Logistic, 6556-12779 mL/gVS; Cone, 7713-14403 mL/gVS and; Transference, 35639-44932 mL/gVS, over the temperature 

range. The biogas potential parameter is not found in the Proposed model, first and second order biogas rate equations, 

linear, exponential and polynomial equations but are useful in finding fitted estimates of the empirical data. Most accurate or 

correct model among the best models obtained here, as per future studies, can be determined using model comparison 

parameters such as the Bayesian Information Criterion, Akaike’s Information Criterion and F-test. 
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I. INTRODUCTION 

 

Liquid manures are principally formulated from plants and 

animal remains. They are mixtures of animal waste (e.g. 

blood, bone, fur, rumens of slaughtered ruminants, feathers 

etc.), water, plants (such as leguminous plants, sea weed, 

spent grain, among others) and other organic matter used as 

agricultural fertilizer for crop production. Manures from 

guano, cattle, deer, turkey, pigs, rabbit, chickens, horses, 

and sheep are rich in microorganisms that recycle the 

organic matter to help provide NPK and other nutrient 

elements needed for plant growth. When liquid manures are 

applied on farms, they have the advantage of immediate 

percolation into the soil, resulting in faster access by the 

plants. Addition of insect repellant leaves such as 

Azadirachta indica while making manures is good for insect 

control around farmyards [1]. Livestock production and 

other agricultural products are increasing worldwide, 

leading to the accumulation of manures that constitute a 

waste to the surrounding environment. Without appropriate 

attention, they can cause serious problems such as pest, 

rodent and insect attraction, odour, soil pollution, disease-

causing microbes and surface and groundwater pollution 

[2]. Also, high concentration of liquid manure can burn 

plant’s root system leading to its death. To stabilize liquid 

manures for the environment as well as crop plants, 

anaerobic digestion (AD) can prove very effective [3]. 

Because, it can help transform these manures or wastes into 

clean energy, reducing dependency on fossil fuels, odor and 

waste reduction, replenishing lost nutrients of arable 

farmlands through production of biofertilizers and 

controlling environmental pollution [2, 4, 5]. 

 

The source from which clean energy is derived from all 

anaerobic processes is biogas. During biogas synthesis, 

factors inherent to its production from liquid manures such 

as pretreatment method, carbon-to-nitrogen ratio, pH, 

chemical oxygen demand, additives, volatile fatty acid 

content, inoculation ratio, inhibitors, temperature, retention 

time, organic loading rate, pressure, substrate mixing or 

agitation, presence of micro/macro-nutrients, effect of co-

digestion, moisture content and particle sizes of the 

feedstock are often considered [6, 7]. Of all these, particle 

sizes are not sufficiently studied, even though they had a 

http://www.isroset.org/
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notable effect on the feedstock biodegradability. Fine 

substrate particle sizes create a huge surface area for the 

microbial species and subsequent rise in substrate utilization 

rate and product gas generation [8]. Equations mainly used 

for estimating and inter-relating some of these parameters of 

biogas production had been presented in the literature. The 

equations can help in estimating the biogas potential of 

organic waste; liquid manure inclusive. In order to analyze 

the cumulative biogas yield (CBY) of substrate with time 

obtained from experimental setup of biogas production, 

kinetic models had often been used. It is worthy of note that 

these model kinetic equations deviate in number and type of 

parameters for estimation of biogas potential of substrate 

and do not satisfactorily fit all empirical biogas data. This is 

the reason, in most cases for the selection of specific kinetic 

model for analysis of CBY of feedstock. Kinetics of biogas 

generation essentially targets the changes in gas production 

as a function of time [9]. Microorganisms are necessary to 

enable AD of feedstock to product as most kinetic models 

assumes that biogas produced are function of bacterial 

growth [10, 11]. AD is regarded as a dynamic process 

affected by different other parameters including inoculum 

source, heating, mixing, addition or non-addition of 

nutrients, pretreatment and storage condition [12]. Thus, 

caution should be taken while carrying out the batch 

analysis test using the fermentation process, as this is key to 

evaluating the kinetics of biogas production [13]. Empirical 

observations obtained from experimental data are sources 

for most kinetic growth models [14]. Kinetic studies help in 

knowing the suitability of kinetic models to define the 

significance of relationship present among variables to 

direct the empirical design, assess the observed results, and 

to define the specific parameters of the system performance 

[15]. With real kinetic parameters, performing diverse 

simulations to explore the effect of varying experimental 

circumstances is conceivable [16]. In addition, these 

parameters, which are maximum biogas production rate, 

biogas yield potential and duration of the lag phase of the 

reaction, will facilitate the design and scale-up of laboratory 

experiment into industrial size application, after obtaining 

them by fitting experimental values with the models  [11, 

17]. It is pertinent to emphasize the significance of kinetic 

study of biogas production using liquid manure as feedstock 

as shown in Table 1. 
 

Table 1: Merits of Biogas Kinetic Study 

S/No. Importance Reference 

1. Regulate and maximize the flow of gas generated [18] 

2. Plant sizing and to formulate relationship amongst dissimilar parameters 

upsetting the AD process 

[19] 

3. Evaluate empirical results, check initial hypothesis, control and predict the 

process performance, aid plant design optimization 

[20, 21] 

4. Scale up analysis and estimation of treatment efficiencies of full-scale 

bioreactors 

[15] 

5. Empirical kinetic studies results can be used for simulating the digester 

behavior and predicting biogas production 

[15] 

6. Construction/formulation of chemical and/or biochemical procedures [16] 

7. Gain insight on features of the process for possible optimization [16] 

8. Understanding basic mechanism of complex AD process involving different 

microorganisms for process design and control 

[10] 

9. Evaluate the metabolic pathways and mechanisms involve throughout the AD 

process 

[4] 

10. Predict bioreactor efficiency [4] 

11. Appraise the hydrolytic method and compare similarity between diverse 

lignocellulosic species. 

[22] 

 

Table 2 presents different models listed by Abubakar (2022) on biogas kinetics together with their parameters, 

 

Table 2: Equations of Models of Cumulative Biogas Production 

No. Models Name Equations Reference 

1. First-Order Main:                𝐶𝐵𝑌 = 𝐵𝑃(1 − 𝑒−𝑘𝑡) 

Linearized:       ln 𝐶𝑀𝑌 = ln 𝐵𝑃 + ln(1 − 𝑒−𝑘𝑡) 

[24–26] 

2. Modified First-

Order 
Main:                𝐶𝐵𝑌 = 𝐵𝑃[(1 − 𝛽) − (1 − 𝛽)𝑒−𝑘𝑡] 
Linearized:      ln 𝐶𝐵𝑌 = ln 𝐵𝑃 + ln[(1 − 𝛽) − (1 − 𝛽)𝑒−𝑘𝑡] 

[27] 

3. Modified Gompertz 
Main:                𝐶𝐵𝑌 = 𝐵𝑃𝑒−𝑒

[
𝑘.𝑒
𝐵𝑃

(𝐿𝑃−𝑡)+1]

 

Linearized:    ln 𝐶𝐵𝑌 = ln 𝐵𝑃 − 2.718282𝑒
𝑘.𝑒

𝐵𝑃
(𝐿𝑃−𝑡)

 

[28–30] 

4. Logistic Main:                𝐶𝐵𝑌 =
𝐵𝑃

1+𝑒
[
4.𝑘(𝐿𝑃−𝑡)

𝐵𝑃 +2]
 

Linearized:  ln 𝐶𝑀𝑌 = ln 𝐵𝑃 − ln {1 + 𝑒[
4.𝑘(𝐿𝑃−𝑡)

𝐵𝑃
+2]} 

[15, 31, 32] 
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5. Transfert 
Main:                𝐶𝐵𝑌 = 𝐵𝑃𝑒−𝑒

[1− 
𝑘.𝑒
𝐵𝑃

(𝐿𝑃−𝑡)]

 

Linearized:   ln 𝐶𝑀𝑌 = ln 𝐵𝑃 − 𝑒[1−
𝑘.𝑒

𝐵𝑃
(𝐿𝑃−𝑡)]

 

[9] 

6. Richards 
Main:  𝐶𝐵𝑌 = 𝐵𝑃 {1 + 𝑆𝐹𝑒(1+𝑆𝐹). 𝑒[

𝑘

𝐵𝑃
(1+𝑆𝐹)(1+

1

𝑆𝐹
)(𝐿𝑃−𝑡)]}

1
𝑆𝐹⁄

 

Linearize: 

ln 𝐶𝐵𝑌 = ln 𝐵𝑃 +
1

𝑆𝐹
ln {1 + 𝑆𝐹𝑒(1+𝑆𝐹). 𝑒[

𝑘
𝐵𝑃

(1+𝑆𝐹)(1+
1

𝑆𝐹
)(𝐿𝑃−𝑡)]} 

[9, 33] 

7. Cone Main:             𝐶𝐵𝑌 =
𝐵𝑃

1+(𝑘𝑡)−𝑆𝐹 

Linearized:     ln 𝐶𝐵𝑌 = ln 𝐵𝑃 − ln[1 + (𝑘𝑡)−𝑆𝐹] 

[34, 35] 

8. Transference 
Main:            𝐶𝐵𝑌 = 𝐵𝑃 {1 − 𝑒[− 

𝑘(𝑡−𝐿𝑃)

𝐵𝑃
]} 

Linearized:    ln 𝐶𝐵𝑌 = ln 𝐵𝑃 + ln {1 − 𝑒[− 
𝑘(𝑡−𝐿𝑃)

𝐵𝑃
]} 

[31] 

9. Fitzhugh Main:            𝐶𝐵𝑌 = 𝐵𝑃 [1 − 𝑒(−𝑘𝑡)𝑆𝐹
] 

Linearized:    ln 𝐶𝐵𝑌 = ln 𝐵𝑃 + ln [1 − 𝑒(−𝑘𝑡)𝑆𝐹
] 

[36, 37] 

10. BPK Model 

Main:  𝐶𝐵𝑌 = 𝐵𝑃 {1 − 𝑒
[(𝑚−1)(

𝑡

𝑡0
)

1
𝑚]

} 

Linearized: 

log (ln
BP

BP − CBY
) = [log(1 − m) −

1

m
log(t0)] +

1

m
log(t) 

[28] 

11 Proposed Model Main:    
CBY = A + BX1 + CX2 + DX1

2 + EX2
2 + FX1X2 + GX1

3 + HX2
3 + IX1X2

2

+ JX1
2X2 

[37] 

12. Chen & Hashimoto Main: 𝐶BY = BP (
KCH

t μmax+KCH−1
) 

Linearized:    ln 𝐶𝐵𝑌 = ln 𝐵𝑃 + ln (
KCH

t μmax+KCH−1
) 

[25] 

 

where, CBY = cumulative biogas yield at digestion time t 

days (mL/g VS); BP = maximum biogas potential of the 

substrate (mL/g VS); 𝛽 = non-degradable fraction of the 

substrate; k = specific (maximum) biogas production rate 

(day−1); LP = lag phase (day); e = logarithmic constant (= 

2.718282); t = incubation or retention time (day); SF = 

shape factor or shape coefficient of the curve; X1 represents 

the hydraulic retention time in days; X2 stands for the ratio 

of the reactor ranges from 1 to 5 (i.e. for reactor 1, X2 = 1, 

for reactor 2, X2 = 2, for reactor 3, X2 = 3, for reactor 4, X2 

= 4 and for reactor 5, X2 = 5); A to J are constant values; 

KCH is Chen and Hashimoto kinetic dimensionless constant; 

m = specific constants for the kinetic process; to = constant 

parameter and; μmax = maximum specific growth rate of 

microorganisms (day
−1

). Apart from CBY and t, all other 

parameters are referred to as kinetic parameters. Kinetic 

parameters are essential for biodigester design and optimal 

operation of large-scale anaerobic plants – because they can 

be used to survey the effect of the substrate ratios on biogas 

production to see whether values of kinetic constants is 

hinged on feedstock and degree of fragmentation [3, 38, 

39]. 

 

Modified Gompertz model stands among the best, popular, 

most adequate and comprehensive biogas kinetic models for 

simulating batch organic waste anaerobic decomposition 

[13, 40, 41].  The semi-empirical model, is a modified form 

of the Gompertz equation that assumes cumulative biogas 

production is a function of hydraulic retention time [28, 40, 

42–45]. It is important in analyzing product formation rate 

or cell growth rate because it provides a direct relationship 

between microbes and biogas yield [41, 46]. For this reason, 

the modified Gompertz model is the most reliable model for 

defining bacterial growth [11]. The model can describe cell 

density with respect to the lag phase duration and 

exponential growth rates during bacterial growth in AD 

processes [31, 44, 47]. However, it fails to explain the start 

of the process, and no-sense of LP constant has been 

considered [28].  It is common to estimate kinetic constants 

from the modified Gompertz models data gotten from 

experimental study and checked for fitness of the model [9, 

31, 48]. The growth rate of the modified Gompertz equation 

curve is greater than zero (positive), and its curved shape is 

directly linked to the equation parameters, assuming growth 

is inhibited by substrate level logarithmically [28, 49]. Cone 

model is less popular in the literature in terms of its 

application to simulate biogas formation [41]. It is one of 

the models that points to digestion efficiency and substrate 

biodegradability [35]. 

 

The logistic kinetic model is used to describe a time-

dependent process in which at the initial stage, the growth is 

exponential and upon saturation, the growth will slow down 

and achieve plateau at the end [15]. Logistic kinetic model 

is among the complex models specifically developed to 

study the LP [32]. It is a sigmoid curve used to explain a 

time-dependent procedure in which at the starting stage, the 
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exponential growth is witnessed and upon saturation, the 

growth slows down and achieve plateau at the end [15]. 

Logistic function model finds application in biomethane 

potential tests and solid waste methanation/fermentation in 

landfills, taking into account that the rate of biogas 

production is directly proportional to k, BP and the amount 

of gas already generated [31]. The model describes CBY 

from batch digesters, assuming that the gas generation is a 

function of microbial growth [50]. An extension of the 

Logistic model is the Bi-logistic model [4]. It tried to 

include the diauxic growth effect in biogas production [51]. 

First order kinetic model is practical in finding the rate and 

extent of bio-decomposition by assuming the substrate 

hydrolysis stage of the AD as the rate-limiting step [20]. It 

is hard to accurately simulate the degradation of 

lignocellulosic material using the first order model owing to 

the fluctuation or instability of the non-degradable fraction. 

To solve the problem with degradability of complex 

substrate, a modified first order kinetic model can be used 

to improve the precision of the simulation [27]. 

 

Just like the Fitzhugh and Richards’ models, they are the 

only model that incorporates the shape factor (SF), a 

parameter that signals the presence or absence of LP [20, 

21]. Essentially, it allows the determination of k and the 

behavior of biogas production which is based on ‘SF’. Also, 

the Fitzhugh model try to explore the hydrolytic and 

methanogenic performances of different digesters [22]. The 

transference function is applied traditionally to measure the 

efficacy of conventional pretreatments, always there to fit 

inputs and outputs mathematically in reaction black box or 

curve-type model [27].  The model predicts maximum 

biogas production uniquely based on methane production 

using a sigmoid curve following the principle that a process 

could be analyzed as a system getting inputs and generating 

output – what is called control [31]. Venkateshkumar et al. 

(2020) proposed a new model they called the ‘Proposed 

model’ that relates CBY which depends on input parameters 

like specific substrates and its blends and inoculation time. 

The Chen and Hashimoto model has been applied 

successfully  for both batch and continuous AD processes 

for the evaluation of anaerobic fermentation reactions [25, 

52]. Lots of other models developed are not common in 

field applications. 

 

Regression analysis is the most widely applied statistical 

technique which has to do with identifying, evaluating and 

analyzing the relationship between dependent and 

independent variable [53]. Independent variables are also 

referred to as explanatory or predictor variables. The 

dependent variable is a single variable that is predicted with 

the help of one or multiple independent variables [54]. 

Questions answered by regression analysis are: (i) how does 

changes in one or more of the explanatory variable(s) 

affects the dependent variable? (ii) which variable matters 

most? and most importantly, (iii) how certain are we about 

these variables [53, 55]. The statistical analysis techniques 

is applied in physical, social and behavioral sciences as well 

as finance to predict GDP growth and product sales [54, 

56]. Three types of regression analysis can be distinguished, 

as depicted in Table 3. 

 

Table 3: Types of Regression Analysis 

Regression Type Equation 

Linear 𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝜀 
Multiple Linear 𝑦 = 𝑎0 + 𝑎1𝑥1 + 𝑎2𝑥2 + ⋯ +  𝜀 

Nonlinear polynomial; exponential equations 

where, y = dependent variable; x = predictor variable; a = constants; and 𝜀 = error or residuals 

“Subscript” is used to differentiate multiple number of variables and constants 

 

 

Linear regression corresponds with the equation of a 

straight line having a single independent variable (𝑥1), slope 

(𝑎1) and an intercept (𝑎0). Multiple linear regression 

consists of multiple independent variables (𝑥1, 𝑥2, …) with 

their respective coefficients (𝑎1, 𝑏2, …) and a constant (𝑎0). 

Nonlinear regression results in a curved plot as seen in 

Figure 1. The coefficient of determination (R
2
) and the 

adjusted R
2
 are mostly used wisely to explain outcome of 

regression fitting of observed data. R
2
 ranges from 0-1 and 

is a measure of the proportion of variance of a predicted 

outcome as well as how well a regression model fits the 

data. A value of 1 means every point on the regression line 

fits the data. Also, R
2
 is commonly used to show how 

accurately a regression model can predict future outcomes. 

 

II. RELATED WORK 

 

Ciborowski (2001) assessed the utilization of livestock 

manure to solve pollution problem and energy generation in 

consonance with Liebetrau et al. (2021) who collectively 

assessed the potential of the substrate for biogas production 

in 7 countries where they found that Norway has 26000 

animal farms, Ireland had approximately 33 million 

livestock in 2018 while in Germany, 2/3 of manure 

generated is not used for biogas generation. Mohammed et 

al. (2020)’s record indicate that Nigeria has more than 14.73 

million cattle capable of generating large volumes of 

biogas. Based on search regarding the exploration of liquid 

manure for kinetic study of biogas generation done in this 

work, the use of majority of the kinetic models presented in 

Table 2 is scanty for most feedstock, including manure. The 

following research had been carried out: Abdulsalam and 

Umar (2015) studied kinetics of biogas production by co-

digesting elephant and cow dung; microbial kinetic study of 

biogas generation from chicken manure by UlukardeŞler 

and Atalay (2018), where Contois with decay rate model 

was reported as the best; animal manure and organic waste 

kinetic study in Arifan et al. (2021a) & Arifan et al. (2021b) 

where Modified Gompertz model with BP = 3273.20 
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mL/gTS and higher R
2
 compared to First-Order model (BP 

= 3517.95 mL/gTS) is considered the best, because the later 

deviates between measured and correlated data; and in 

Zhang et al. (2022) where Modified Gompertz model fits 

more efficiently than the First-Order kinetic model by 

sorghum-vinegar residue enhancement of biogas production 

using livestock manure. Since most researchers dwell on co-

digestion of manure with other substrate, Tufaner and Avsar 

(2016) collectively review the effect on biogas generation, 

without the kinetic aspect. So, the difference between 

literature work and this one, are in areas of codigestion and 

the type of kinetic model utilized. 

 

For instance, Shitophyta et al. (2021) compared the linear, 

exponential and the Gaussian model used to estimate the 

constants ‘x’ (mL/gVS/day) & ‘y’ (day) and 𝑡𝑚 – time 

when the peak biogas production rate ensued as given in 

Equation (1) 

 

 BY = x 𝑒
[−0.5(

𝑡−𝑡𝑚
𝑦

)
2

]
                      (1) 

 

Fakkaew & Polprasert (2021) also presented the Arrhenius 

equation (or Equation 2), frequently applied to determine 

the energy parameters of some models, 

 

 𝑘 = 𝐴𝑒− 
𝐸

𝑅𝑇                       (2) 

 

where, T represents the absolute temperature (K); A 

represents the pre-exponential factor; E represents the 

reaction activation energy (J/mol) and; R represrnts the ideal 

gas constant (8.314 J/mol.K). Eronmosele et al. (2020) in 

their work, measured the temperature of the digesting 

multiple substrate over the retention period but did not use 

equation 2 to determine E and A, as they require running the 

system at constant temperature to obtain ‘k’; and repeating 

the step at another constant temperature with a different 

reactor.  Examples of nonlinear regression tools used by 

authors in bioprocess analysis so far to estimate these 

constants includes Microsoft Excel program [22, 68–71], 

POLYMATH educational version [11, 41], nonlinear curve 

fitting toolbox of MATLAB [19, 24, 72], Sigma Plot [4], 

SPSS software [8], OriginPro [15, 22, 25, 73], Statistica 

[74, 75], Datafit [37], 1stOpt 15 Pro (7D-Soft High 

Technology Inc. China) [63] and PAST [76] among other 

regression tools mentioned by Abubakar et al. (2022).  

 

III. METHODOLOGY 

 

Biogas Yield (BY) Data: Laboratory experiment carried 

out by Fhooe2021 resulting in the formulation of an Excel 

calculator was used to access the BY of liquid manure with 

retention time for different temperature.  

 

The temperature range taken by Fhooe was 10-45℃ for 

retention time ranging from 25-150 days, where at constant 

retention time (RT), the Excel calculator recorded an 

increase in BY with increasing digestion temperature. BY 

(L/kgVS or mL/gVS); where VS stands for volatile solid at 

varying interval of the RT from 26-150 days at temperatures 

of 25, 30, 35, 40 and 45℃ as presented in Table 4 was used 

to determine the CBY. 

 

Cumulative Biogas Yield (CBY): Since in all the model 

equations shown in Table 2, CBY is the dependent variable; 

hence, it was determined by successive addition of the 

previous and next BY in the column for each temperature. 

The kinetic models were linearized where necessary for 

better parameter estimation. 

 

Regression with Excel Solver: The Excel Solver add-in 

program found under the Data menu in Microsoft Excel was 

used to estimate the unknown kinetic parameters. The 

Solver was used to estimate the R
2
 in regression analysis, 

determine maximum and minimum values of the objective 

functions in linear programming and finding roots of 

nonlinear equations. For nonlinear equations involving 

exponential functions as in kinetic models of Table 2, they 

were linearized by taking common or natural logarithm of 

the equations. The linearized form of the model equations 

was then used instead of the main or original formula for 

regression purpose. Where linearization will not fit any 

regression model type, POLYMATH was explored for the 

similar reason. R
2
 was determined for the respective models 

following the listed steps. 

 

Step 1: The average value of the natural log of the 

experimental data, (ln CBYExpt.  avg) which is equal to, 

(
ln 𝐶𝐵𝑌𝐸𝑥𝑝𝑡.

𝑁
), where N represents the number of data points, 

was computed. 

 

Step 2: Total sum of squares (TSS) as, ∑(ln 𝐶𝐵𝑌𝐸𝑥𝑝𝑡. −

ln 𝐶𝐵𝑌𝐸𝑥𝑝𝑡.  𝑎𝑣𝑔)
2
, was calculated. 

 

Step 3: Appropriately, the values of the unknown constant 

parameters of the equations, which can then be used to 

compute the correlated or fitted values of CBY, 

(ln 𝐶𝐵𝑌𝐶𝑜𝑟𝑟.), were guessed. 

 

Step 4: The error or the difference between the 

experimental and fitted/predicted values of their respective 

logarithms, as in (ln 𝐶𝐵𝑌𝐸𝑥𝑝𝑡. − ln 𝐶𝐵𝑌𝐶𝑜𝑟𝑟.), was 

computed. 

 

Step 5: Sum of squared error (SSE), ∑(ln CBYExpt. −

ln CBYCorr.)
2
, was calculated. 

 

Step 6: Model/predicted values of CBY (CBYCorr.), by 

taking the antilog of (ln CBYCorr.) in (iii) above, was found. 

 

Step 7: Equation 3 was used to set the value of R
2
. 

 

R2 = 1 −
SSE

TSS
= 1 −

∑(ln CBYExpt.−ln CBYCorr.)
2

∑(ln CBYExpt.−ln CBYExpt.  avg)
2               (3) 

 

Step 8: The calculated value of R
2
 after following the seven 

computation steps above was maximized using Excel Solver 

by changing the respective values of the guessed parameters 
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in (ii) above. If the new 𝐶𝐵𝑌𝐶𝑜𝑟𝑟. values deviates too much 

from the empirical values (CBYExpt.) or the estimated 

unknown parameters falls out of range of their typical 

values, new guesses were made and then Excel Solver is 

invoke to compute R
2
 again. When exhaustive guesses fails 

to give the desired unknown estimates, it was concluded 

that the experimental data doesn’t fit the proposed model 

equation. 

 

Adjusted R
2
 was determined based on Equation (4), where, 

n represents the number of points in the data set, while q 

represents the number of independent variables from the 

model, excluding the constant. 

 

 Adj. R2 = 1 −
(1−R2)(n−1)

(n−q−1)
                     (4) 

 

Biogas rate constant: The first and second order biogas 

rate constant, k (in mL/gVS/day) were determined using 

Equations (5) and (6) respectively, given by Shitophyta and 

Maryudi (2018) and Nwosu-obieogu et al. (2020) at 5 

different temperature values. 

 

First Order: ln (
BYm

BYm−BYt
) = kt                     (5) 

 

Second Order: (
BYm

BYm−BYt
)

−1

= kt                     (6) 

 

Where, BYm = biogas yield generated in 150 days or the 

final BY value (mL/gVS), BYt = biogas yield generated at 

time, t (mL/gVS) and t = biogas production time or RT 

(day). 
 

Constants from Basic Mathematical Functions: The 

constants a, b, c, d, and e (mL/gVS/day) in the linear, 

exponential and polynomial equations relating BY and t 

were estimated by regression using equations presented by 

Ghatak and Mahanta (2014), Nwosu-obieogu et al. (2020) 

and Shitophyta and Maryudi (2018). Respectively, the 

linear, exponential and polynomial equations are as shown 

in Equations (7), (8) and (9). 

 

 BY = a + bt                       (7) 

 BY = a + btect                       (8) 

 BY = a + bt + ct2 + dt3 + et4                     (9) 
 

On the ascending graph of biogas production, the constant 

‘c’ in the exponential function is often predicted to 

approach a positive value, as stated by Ghatak and Mahanta 

(2014). 

 

IV. RESULTS AND DISCUSSION 

 

Over a 150 days retention period, biogas yield from 

anaerobic digestion of liquid manure, at five different 

temperatures were recorded from the simulated Excel 

Biogas Calculator as shown in Table 4. 

  

Table 4. Biogas Yield at Different Temperature 

Run Retention Time 

(day) 

Biogas Yield (mL/gVS) 

  25℃ 30℃ 35℃ 40℃ 45℃ 

1. 26 177.56 250.71 323.86 397.01 470.16 

2. 27 179.86 252.83 325.79 398.75 471.71 

3. 30 186.79 259.18 331.58 403.97 476.36 

4. 32 191.41 263.42 335.44 407.45 479.46 

5. 35 198.34 269.78 341.22 412.67 484.11 

6. 36 200.64 271.9 343.15 414.41 485.66 

7. 40 209.88 280.38 350.87 421.37 491.87 

8. 42 214.50 284.62 354.73 424.85 494.97 

9. 45 221.42 290.97 360.52 430.07 499.62 

10. 50 232.97 301.57 370.17 438.77 507.37 

11. 53 239.90 307.93 375.96 443.99 512.02 

12. 57 249.13 316.41 383.68 450.95 518.23 

13. 59 253.75 320.64 387.54 454.43 521.33 

14. 61 258.37 324.88 391.40 457.91 524.43 

15. 64 265.29 331.24 397.19 463.13 529.08 

16. 68 274.53 339.72 404.91 470.10 535.28 

17. 69 276.84 341.84 406.84 471.84 536.84 

18. 75 290.69 354.55 418.42 482.28 546.14 

19. 77 295.31 358.79 422.27 485.76 549.24 

20. 82 306.85 369.39 431.92 494.46 556.99 

21. 96 339.18 399.06 458.94 518.82 578.70 

22. 100 348.41 407.54 466.66 525.78 584.91 

23. 110 371.50 428.73 485.96 543.18 600.41 

24. 127 410.75 464.76 518.76 572.77 626.77 

25. 128 413.06 466.88 520.69 574.51 628.32 

26. 131 419.99 473.24 526.48 579.73 632.98 

27. 135 429.22 481.71 534.20 586.69 639.18 

28. 143 447.70 498.67 549.64 600.61 651.58 

29. 144 450.00 500.79 551.57 602.35 653.13 

30. 150 463.86 513.50 563.15 612.79 662.44 
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Twelve models shown in Table 2 were regressed as shown 

in Figure 1, 3, 4 and 5. Richards and Chen & Hashimoto 

lines of CBY against time, forms a concave-like shape that 

curves upward, regardless of temperature set chosen as 

shown in Figure 1. 

 

  

 
 

 
Figure 1: Chen & Hashimoto and Richards Models Fitted to CBY Observed at Selected Temperatures 

 

The models did not fit the observed CBY data as well as 

each other; only intersecting at approximately 90 days RT at 

T = 25-40℃ and 100 days when T = 45℃. The mid-way 

intersection feature exhibited by Chen & Hashimoto and 

Richards models when plotted together has no significant 

implication but perchance shows that number of fitted data 

point is unity. The two biogas kinetic models are the only 

models with this feature, where BP is the only unique 
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parameter estimated from them. It ranges from 98.39-

222.54 mL/gVS in Richards model, increasing with increase 

in temperature from 25-40℃ and 275.61-2365.09 mL/gVS 

in Chen & Hashimoto models. Estimated 𝜇𝑚𝑎𝑥 at all 

temperatures in Chen & Hashimoto model is negative, 

implying a negative growth and might explains the reason 

why the line is curved inward, unlike Monod, Contois, 

Moser and other growth models that have the same 

parameter, but curves outwards. Since 𝜇𝑚𝑎𝑥 is negative, the 

higher the 𝜇𝑚𝑎𝑥, the lower should be the BP values 

estimated from Chen & Hashimoto model. In this work, a 

high 𝜇𝑚𝑎𝑥= – 0.0009189 day
-1

 at T = 25℃ gives BP = 

275.6131 mL/gVS, of which a decrease to – 0.0019753 day
-

1
 at T = 45℃ increases BP to 1184.239 mL/gVS. However, 

this assertion is not valid at random temperatures, but is 

presumed correct only at specific temperatures. At T = 30℃ 

where 𝜇𝑚𝑎𝑥 is very small, its BP value of 1633.205 

mL/gVS can be considered the most valid prediction, since 

it is illogical to have a system generating high amount of 

biogas when the growth rate is low (or the case where 

microorganisms are dying). At 40℃, Richards model (a 

member of the twin-shape models) gives the maximum BP 

which is 2365.09 mL/gVS and according to Ali et al. (2018) 

is the best model for biogas plant sizing. 

 

When BP is known, the main Chen & Hashimoto model in 

Table 2 can be re-written in form of an equation of a 

straight line as shown in Equation (10), 

 

 t =
1

μmax
+

KCH

μmax

CBY

BP−CBY
                   (10) 

 

with slope = 
KCH

μmax
 and intercept = 

1

μmax
. The plot of retention 

time, t, against 
CBY

BP−CBY
 is linear, where 

KCH

μmax
 = 1080.6 days 

and 
1

𝜇𝑚𝑎𝑥
 = 1359.7 days using predicted CBY at T = 25℃ as 

shown in Figure 2. 

 

 
Figure 2: Determination of  𝐾𝐶𝐻  and 𝜇𝑚𝑎𝑥 in Chen & 

Hashimoto Model at Temperature of 25℃ 

 

The peak  specific growth rate, 𝜇𝑚𝑎𝑥, that was estimated 

from Figure 2 is not negative and hence negate values 

obtained through regression. It is logical in this case, to 

perform regression to determine BP, and then use this value 

to determine the other two kinetic parameters of the Chen & 

Hashimoto model graphically so as to adjust the values of 

𝐾𝐶𝐻  and 𝜇𝑚𝑎𝑥. However, not all data will give a linear plot, 

which makes the task of finding the slope and intercept 

tedious (as in plot at 30℃). In the literature, Richards and 

Chen & Hashimoto models had not been used specifically 

to analyse biogas output and determine BP of liquid 

manure. At all the temperatures BY of liquid manure was 

obtained, six biogas kinetic models are linear after 

parameter estimation by regression with Excel Solver as 

shown in Figure 3. 
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Figure 3: Fitting Six Biogas Kinetic Models to Observed CBY for Temperatures 25℃, 30℃, 35℃, 40℃ and 45℃. 

 

None of the six kinetic models in Figure 3, namely, 

Modified First-Order, Fitzhugh, Transference, First-Order, 

Proposed and the Biogas Production Kinetic (BPK) models 

fit the experimental results (perfectly). Clearly, at 25℃, 

BPK, Fitzhugh and Modified First-Order models fit each 

other, while at the remaining temperatures, First-Order, 

Modified First-Order and Fitzhugh models fit each other. 

Starting from the parameter, k, Proposed and BPK models 

has nothing to do with this constant and is incapable of 

explaining the maximum gas production rate. The 

maximum biogas production rate, k is a temperature-

dependent parameter expressed in form of an Arrhenius 

equation that explains the trends of the biogas generation. 

That is, lesser volume of anaerobic digester, shorter 

retention time and faster degradation as highlighted by Silva 

et al. (2021). Transference function model gives the highest 

figures of ‘k’ from 59.946-127.411 day
-1

 compared to First-

Order, Fitzhugh and Modified First-Order whose values are 

between 10−3-10−5 day
-1

 given that it doesn’t fit any of the 

other five models plotted in Figure 3. Either high or low, it 

is impossible to generalize the influence of ‘k’, either 

between models or across different temperature it is 

estimated for a particular model. For instance, ‘k’ goes up 

and down from 25-45℃ in Fitzhugh model and the other 

linear lines. Commonly, the higher the ‘k’ value, the higher 

will be the value of the BP of the feedstock. Except at 30℃, 

BP estimated using the corrected First-Order (Modified 

First-Order) model is higher than its value in First-Order 

parameter estimate, which shows that the lower the non-

biodegradable fraction the lower the feedstock potential for 

biogas. But in ideal situation, the lower the non-

biodegradable fraction, the higher the liquid manure biogas 

potential. Deviation might be related to the conditions of the 

reactor given inaccurate empirical BY data, some of which 

are pH fluctuations, inhibitors and low nutrient levels. 

Values of BP in BPK model is negative and it is only when 

BP is known that the linearized equation of BPK in Table 2 

can be used to determine ‘m’ and ‘𝑡0’ (both constant) – 

which is not feasible giving the kind of BP obtained in this 

work. The BPK is a new model which is begging for 

attention of researchers to use so as to compare and contrast 

with other models and variety of feedstock for biogas 

generation. BPK model, perhaps, performs poorly in giving 

right estimates of BP, even though it fits other model in this 

category. In this experiment, one biodigester is used, and 

hence X2 = 1, in the Proposed model. The Proposed model 

have no common kinetic parameter compared to the 
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remaining models, but its lines are bent (almost fitting the 

observed data line) with R
2
 values close to 1. 

 

Sometimes, during AD, an initial delay is experienced at the 

beginning of the process, this delay is termed as the LP. 

According to Pecar & Gorsek (2020), there are three 

scenarios with regards to the LP; a case of no LP signifying 

immediate kick-start of methane production, a shorter LP 

and a longer LP. Shorter LP is because the microbial 

species got a suitable environment for their multiplication or 

the condition of the feedstock being easily degradable. 

Longer LP is caused by the existence of recalcitrant lignin 

structure repelling hydrolysis during the initial stage of 

decomposition or the period needed for microorganisms to 

fit into their new environment is prolonged due to nutrient 

imbalance or population factor [10]. When LP is less than 

zero (or negative), it implies that the system needs no lag 

time to produce biogas and LP can be taken as 0 day [68]. 

Ideally, LP is often longer than 1 day [28]. Just like 

Modified First-Order model having 𝛽 (a unique constant), 

Transference function model with the kinetic parameter 

‘LP’ does not compare favourably with the other linear 

models in Figure 3. An LP = 0 day at T = 35-45℃ gives 

high BP and implies quick onset of biogas production 

without any delay compared to low BP = 35638.60 mL/gVS 

at T = 25℃ in the model. LP can hence be compared to 

those obtained in Modified Gompertz, Logistic, Transfert 

and Richards models shown in Figure 1, 4 and 5.
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Figure 4: CBY Observed at Different Temperatures Fitted to Modified Gompertz, Cone and Logistic Function Models 

 

Figure 4 is a curve depicting the Logistic, Cone and 

Modified Gompertz models at different temperatures. 

Estimates of BP are much closer than models in Figure 1 

and 3 and shows that Cone fits the Modified Gompertz 

model better. The line of the observed CBY is not as 

smooth as the curves in Figure 4, nor is it linear as lines of 

Figure 1 and 3, but looks somewhat between the two 

depictions. In the literature, observed CBY is often 

presented as a curve line similar to bacterial growth curve in 

microbiology where the lag, exponential, stationary and 

death phases is observable and can be differentiated. In all 

three models, as the temperature increases, BP also 

increases and it satisfy the notion that as ‘k’ increases, BP 

increases. Also, when LP is lowest, BP is optimum for all 

the 3 models at T = 45℃. But LP in Richards model is less 

than a day and gives much lower estimates of BP. However, 

in terms of estimates of meaningful results, Transference 

model can be aligned with Cone, Modified Gompertz and 

Logistic models, even though its BP is much higher because 

LP is zero, which is reasonable. At 25℃, BP = 7143 

mL/gVS in Modified Gompertz, it is 6556 mL/gVS in 

Logistic and 7713 mL/gVS in Cone model, showing an 

almost tallying range of estimates. The trend is same at 

other temperatures. Among the sigmoid curves of Figure 4, 

Cone model is one that gives the highest BP and k values 

across all temperature exploited. According to Parralejo et 

al. (2019), SF, signifies the presence or absence of the LP. It 

is found in Richards, Fitzhugh and Cone models. It is a 

dimensionless constant which is between 2.95-3.25 (& 

negative at T = 45℃) in Richards model, between 0.058-

0.107 in Fitzhugh and increasing from lowest to highest 

temperature (i.e. 3.236-3.336) in Cone model. The extent of 

fit by these models to empirical CBY is indicated in 

regression estimates of R
2
 and adjusted R

2
 displayed in 

Table 5.

 

Table 5: Kinetic Parameters Estimated from the Models at Various Temperatures 

Kinetic and 

Regression 

Parameters 

Temperature/Models 

25℃ 30℃ 35℃ 40℃ 45℃ 

Modified Gompertz 

BP 

k 

LP 

 

R
2
 

Adj. R
2
 

7143.446921 

102.9070606 

29.59574097 

 

0.973467971 

0.972520399 

8738.820256 

132.4317 

28.38909997 

 

0.972551164 

0.971570848 

10347.23815 

162.5778915 

27.69566245 

 

0.972131724 

0.971136428 

11963.22083 

193.0834214 

27.25107216 

 

0.971930754 

0.970928281 

13583.94411 

223.8114286 

26.94394195 

 

0.971835243 

0.970829359 
 Modified First-Order 

BP 

k 

𝛽 
 

R
2
 

Adj. R
2
 

6.04 × 105 

0.0001456 

0.3964037 

 

0.67140365 

0.659668067 

80119.39017 

0.000671318 

0 

 

0.753035579 

0.744215421 

2315637.239 

2.83318× 10−5 

5.71904× 10−5 

 

0.768623974 

0.760360545 

955426.205 

8.19456× 10−5 

9.9988× 10−6 

 

0.772314708 

0.764183091 

1105887.731 

8.22098× 10−5 

9.99794× 10−6 

 

0.775136352 

0.767105508 

 Logistic 

BP 

k 

LP 

 

6555.825881 

126.9210384 

35.54338812 

 

8112.79793 

159.8458665 

33.87650029 

 

9667.919303 

193.6217002 

32.86492638 

 

11223.17414 

227.8694536 

32.19090384 

 

12778.70578 

262.4327845 

31.7129628 

 



  Int. J. Sci. Res. in Computer Science and Engineering                                                                       Vol.10, Issue.2, Apr 2022 

© 2022, IJSRCSE All Rights Reserved                                                                                                                                 57 

R
2
 

Adj. R
2
 

0.948637086 

0.946802697 

0.94742757 

0.945549984 
0.94683001 

0.944931082 
0.946517187 

0.944607087 

0.946349376 

0.944433283 
 Chen & Hashimoto 

BP 

𝐾𝐶𝐻  

𝜇𝑚𝑎𝑥 
 

R
2
 

Adj. R
2
 

275.6131 

1.170688 

-0.0009189 

 

0.8404787 

0.8286624 

1633.205 

2.937349 

-0.0102411 

 

0.8272269 

0.8144289 

928.8104 

1.434238 

-0.0022648 

 

0.8169915 

0.8034353 

2365.088 

2.825768 

-0.0094274 

 

0.8089599 

0.7948088 

1184.239 

1.385561 

-0.0019753 

 

0.8025267 

0.7878991 

 Richards 

BP 

k 

LP 

SF 

 

R
2
 

Adj. R
2
 

98.39024348 

-1.237795043 

0.401366638 

3.254296519 
 

0.75818568 

0.749549455 

141.7002839 

-1.706750025 

0.320023278 

3.31297785 

 

0.743978099 

0.73483446 

177.6148419 

-1.953358171 

0.305912329 

2.947841081 

 

0.733565574 

0.724050059 

222.5392724 

-2.451225698 

0.387947349 

3.100960721 

 

0.725828697 

0.716036865 

127.3284623 

0.002716221 

0.502906926 

-0.004849712 

 

0.667171253 

0.655284512 
 Fitzhugh 

BP 

k 

SF 

 

R
2
 

Adj. R
2
 

611212.1474 

0.001151027 

0.057551315 

 

0.747668686 

0.738656854 

392239.3358 

0.001646402 

0.082320117 

 

0.760084539 

0.75151613 

579395.9104 

0.001065069 

0.106506913 

 

0.767583851 

0.759283274 

705952.591 

0.001054979 

0.105497859 

 

0.771993338 

0.763850243 

634192.8908 

0.001695166 

0.084758185 

 

0.774443914 

0.766388339 
 Cone 

BP 

k 

SF 

 

R
2
 

Adj. R
2
 

7712.588907 

0.014652325 

3.236403621 

 

0.97395494 

0.973024759 

9371.462283 

0.015420558 

3.259472513 

 

0.972963999 

0.971998427 

11041.6083 

0.015960744 

3.287669957 

 

0.972449398 

0.971465448 

12717.66541 

0.016359478 

3.313975795 

 

0.972159323 

0.971165013 

14403.38951 

0.01666037 

3.336315065 

 

0.971985973 

0.970985472 
 Transfert 

BP 

k 

LP 

 

R
2
 

Adj. R
2
 

40654.20849 

9.99371 × 10−5 

0.01 

 

-1.28057× 10−6 

-0.035715612 

53457.61924 

9.99997× 10−6 

0.01 

 

-1.00849× 10−7 

-0.03571439 

66193.96549 

0.000959596 

0.010000048 

 

-7.97935× 10−6 

-0.03572255 

78894.09123 

9.99951× 10−5 

0.01 

 

-7.07302× 10−7 

-0.035715018 

91574.19593 

9.99994× 10−6 

0.01 

 

-6.1537× 10−8 

-0.035714349 

 Transference 

BP 

k 

LP 

 

R
2
 

Adj. R
2
 

35638.60483 

59.94627447 

0.001437797 

 

0.996370773 

0.996241158 

77149.52079 

71.65882571 

0 

 

0.997681601 

0.997598801 

69504.4837 

87.40749222 

0 

 

0.99799884 

0.99792737 

53044.43616 

105.9650691 

2.24033× 10−6 

 

0.998056701 

0.997987298 

44932.10429 

127.4106031 

0 

 

0.998090418 

0.998022218 

 First-Order 

BP 

k 

 

R
2
 

Adj. R
2
 

743417.34 

5.44364× 10−5 

 

0.747826946 

0.738820765 

416409.0572 

0.000127626 

 

0.760184733 

0.751619902 

393866.7705 

0.000168595 

 

0.766934639 

0.758610876 

533884.0698 

0.000146777 

 

0.771540768 

0.763381509 

456797.7484 

0.000199662 

 

0.773797099 

0.765718424 

 Proposed Model 

A 

B 

C 

D 

E 

F 

G 

-559.9421 

60.64252 

-1170.196 

-0.6017964 

-640.55 

42.2444 

0.0034667 

-540.6475 

60.64294 

-1150.902 

-0.442898 

-621.2564 

42.24482 

0.0018146 

-521.346 

60.64311 

-1131.601 

-0.2839993 

-601.9558 

42.24498 

0.0001626 

-464.6088 

60.64271 

-1074.864 

-0.1661918 

-545.2195 

42.24457 

-0.0009379 

-333.7367 

60.64303 

-943.9924 

-0.1297273 

-414.3483 

42.24489 

-0.0009471 
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H 

I 

J 

 

R
2
 

Adj. R
2
 

-807.0197 

47.12603 

-0.3974966 

 

0.9925761 

0.9892353 

-787.7255 

47.12646 

-0.2385983 

 

0.9912222 

0.9872721 

-768.4241 

47.12663 

-0.0796996 

 

0.989003 

0.9840544 

-711.6871 

47.12623 

0.0381078 

 

0.9869017 

0.9810075 

-580.8152 

47.12655 

0.0745723 

 

0.9826268 

0.9748088 

 BPK 

BP 

m 

𝑡0 

 

R
2
 

Adj. R
2
 

-9.94× 10−35 

82.68092 

0.6191326 

 

0.95481 

0.9514626 

-6.19× 10−34 

81.57365 

0.9900841 

 

0.9599333 

0.9569654 

-2.16× 10−33 

80.19316 

0.731614 

 

0.9615457 

0.9586972 

-1.88× 10−32 

76.81822 

0.2026968 

 

0.9614901 

0.9586375 

-7.54× 10−33 

77.74423 

0.1803201 

 

0.959278 

0.9562616 
 

In terms of best fit, the Proposed model, Cone, Modified 

Gompertz, Logistic and Transference models are best with 

R
2
 and adj. R

2
 values > 0.94 as shown in Table 5. Basically, 

R
2
 is seen as a statistical measure of data proximity to the 

fitted regression line and does not show whether a 

regression model is enough or not – as low R
2
 value can be 

obtained for a good model and high R
2
 value can be 

obtained for models that does not fit the data points. Plainly, 

high R
2
 values are not often good and low R

2
 values are not 

often bad. For instance, under BPK model, R
2
 estimated are 

high but BP’s are all negative and Transfert model where all 

R
2
 are extremely low while BP estimated can be compared 

to the best-fit models discussed earlier. The correlated or 

predicted CBY in Transfert model is a constant at all 

temperatures, making the model the worst performing 

model using the experimental data. It gives meaningful 

predictions of BP, k and LP that can be compared with the 

curving-line models, but the fact that it gives a straight 

horizontal line as shown in Figure 5 takes it out of that 

category.

 

  
Figure 5: Transfert Model Together with CBY Observed at T = 25℃ and 30℃ 

 

The nature of Figure 5 shows that the experimental data is 

not suitable for model fitting with Transfert model. Other 

researchers have presented a curve plot using predicted 

CBY values of Transfert model for chicken manure used as 

substrate. Selection of a suitable kinetic model is done to 

evaluate the metabolic mechanisms  and pathways intricate 

during the AD and to predict the efficacy of certain reactors 

[4]. When looking at large scale AD of organic waste for 

biogas production, these parameters mentioned are helpful 

as they provide insight into the anticipated daily biogas 

yield from substrate(s) undergoing digestion [32]. 

 

Figure 6(a-b) is a graph showing First Order and Second 

Order plots obtained by writing the BY in form of a rate 

equation. The first and second order equations are linear, 

from which k was estimated from different temperature 

plots. Using Excel graphing features, k = 0.0211 /day at T 

= 25-45℃ by drawing a straight line over each line. This k 

value is hypothetical as Excel couldn’t give the slope of the 

curve line – unmistakably even the right value of k for a 

first order results will approximately be the same. Second 

order computation of k is approximately equal at all 

temperatures to satisfy this assumption. Apart from this, 

Figure 6 also presents estimates of some constants using 

the three forms of basic equations, namely; linear, 

exponential and polynomial equations. 
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Figure 6: First and Second Order, Linear, Exponential and Polynomial Model Plots at the Experimented Temperature 

 

The linear, exponential and polynomial lines are same, 

linear and gives almost identical estimates of the constants 

a, b, c, d, and e. Unlike the models given in Table 2, the 

different degree of algebraic equations in Figure 6 cannot be 

used to optimize the process of producing biogas. 

Shitophyta et al. (2021), following the kinetic studies 

carried out using Tofu liquid waste, reported that 

exponential model correlates better than the linear equation. 
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The first order model can be compared almost to the 

Richards and Chen & Hashimoto models of Figure 1 that 

curves inward, though here BY is used instead of CBY and 

values of k is not negative as in Richards model as reported 

in this work. 

 

Therefore, with known biogas potential from liquid manure, 

the development of biogas systems to be channeled into 

biogas stoves, especially in rural areas will serve as an 

alternative energy source apart from solar (in temperate 

regions) to be used for cooking and lighting [83, 84]. Since 

the majority of the feedstock is found in rural areas where 

livestock farming is prominent. In locations where animals 

roam for food and water, it will be impossible to develop an 

accurate figure of the amount of waste they generate and in 

turn makes biogas potential prediction difficult. Especially 

in Northern Nigeria where animals such as cows are moved 

across states in search of nutrition and water. 

 

V. CONCLUSION AND FUTURE SCOPE 

 

This study can be replicated in Maiduguri (in North Eastern 

Nigeria), which is located between latitudes 12° 30”N and 

14° 30”N and longitudes 10° 30”E and 14° 45”E – an area 

between the Sudan Savannah and Sahel Savannah 

vegetation zones, with 11°46'18" N to 11°53'21" N as its 

latitudinal spread and 13°03'23" E to 13°14'19" E as its 

longitudinal extension [85–88], also known for livestock 

production with potential for liquid manures from animal 

slaughterhouses that can be channeled into biogas 

production. Apart from the North Eastern states of 

Adamawa and Borno States or the Northern part of Nigeria 

as a whole with huge animal population, biogas has 

potentials in Europe, Asia and many other African countries 

with high proportion of livestock waste.   Results show that 

the temperature ranging from 25-45℃ is suitable for liquid 

manure biogas production while the kinetic models, namely, 

Transference, Cone, Proposed model, Logistic and 

Modified Gompertz are the finest models for the feedstock. 

Determination of energy parameters like the the pre-

exponential factor and activation energy using the 

Arrhenius equation can be further carried out at k’s obtained 

at different temperatures. Furthermore, the time the 

maximum gas production occurred can be computed using 

the Gaussian model reported in the literature. 
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