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Abstract— Due to the dynamic and ever-increasing nature of cyber threats, the traditional network intrusion detection systems 

(NIDS) are not sufficient and are slow to respond to the adapting of new threats since they utilize rigid rules and signature-based 

detection techniques. This research study aims to design an intelligent adaptive intrusion detection system capable of precise and 

prompt detection of both established and latent threats to the network. Achieving optimal results from feature extraction, spatial 

pattern recognition, and temporal sequence learning requires a hybrid model that synergistically combines Random Forest, 

Convolutional Neural Network, and Gated Recurrent Unit (GRU). The model was built in Python using TensorFlow and Scikit-

learn, training and testing it with the KDD Cup 1999 dataset. The experimental results indicated that the proposed model 

outperformed existing models, achieving an accuracy of 99.23%. This finding confirms the effectiveness of integrating multiple 

deep learning models. The research data illustrates how the models effectively resolve a basic cybersecurity challenge during 

active performance.  

 

Keywords—Network Intrusion Detection, Artificial Intelligence, Random Forest, Convolutional Neural Network, Gated 

Recurrent Unit. 

 
 

Graphical Abstract— 

 

1. Introduction 
 

It has become more challenging to protect sensitive 

information from misuse, access, or cyber activities in today’s 

world. The rise in attacks has made signature-based and rule-

based Intrusion Detection Systems (IDS) obsolete [1]. Due to 

their reliance on static frameworks, these systems are 

incapable of accommodating new and evolving threats, 

making them more susceptible to zero-day exploit attacks and 

advanced persistent threats [2]. To address this critical gap, 

recent research has proposed using Artificial Intelligence (AI) 

methodologies capable of autonomously learning from data, 

recognizing unusual changes, and continually adjusting to 

new patterns in network activity [3].  

 

This research was motivated by the necessity of intelligent, 

self-adapting intrusion detection systems capable of 

functioning in high-traffic and dynamic settings. We propose 

a hybrid AI solution that combines Random Forest with CNN 

and GRU models. Random Forest uses ensemble learning and 

explainability features, while CNN efficiently grabs local 

spatial information from connections attributes, and GRU can 

learn the temporal relationships in sequences of network 

behavior. Together, these models constitute an end-to-end 

detection system that learns complex patterns, identifies and 

counters adapting attack strategies, and responds forcefully to 

changing aggressive tactics. 

 

This research is valuable, that may help alleviate the conflicts 

between real-time adaptive network security and in the 

detection systems. This work aims to design a model which 

combines classical machine learning with complex deep 

learning networks to address the issues of existing models 
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with the lack of scalability, learning, and responsiveness. 

Moreover, the research provides a methodology for 

automated threat elimination which serves the purpose of 

building a more proactive defense system. A comprehensive 

model building, testing, and refinement approach is taken in 

this work to provide a flexible solution to the evolving 

challenges in cyber intrusion detection. 

 

1.1 Problem Statement 

With the exponential growth of sophisticated cyber threats, 

traditional Network Intrusion Detection Systems (NIDS), 

which predominantly rely on static, signature-based, or rule-

based methods, are increasingly becoming ineffective. These 

conventional systems struggle to detect zero-day attacks and 

advanced persistent threats, as they lack adaptability, 

scalability, and the capability to process high-dimensional 

and imbalanced network data. Moreover, existing models 

often fail to capture the temporal and spatial behavior of 

network traffic, leading to poor detection accuracy and high 

false positive rates. In addition to that, the most current 

models either cannot process high-dimensional data or cannot 

catch temporal and spatial patterns in network traffic [4].  

 

This growing gap necessitates a robust, intelligent, and 

adaptive solution for real-time intrusion detection. This 

research overcomes the limitations by introducing a hybrid 

artificial intelligence-based NIDS that combines RF, CNN, 

and GRU models. The aim is to improve intrusion detection 

accuracy, minimize false positives, and maximize real-time 

responsiveness by combining the strengths of each model in 

feature selection, spatial analysis, and temporal sequence 

learning. 

 

1.2 Objective of the Study 

The objective of this research study is given as follows: 

 Take advantage of the feature selection capability and 

spatial pattern recognition power of Random Forest (RF) 

and the temporal sequence learning capability of 

Convolutional Neural Network (CNN) and Gated 

Recurrent Unit (GRU) to make out a hybrid and adaptive 

NIDS model. 

 Increase the detection against known and zero-day 

attacks with few false positives and better real-time 

performance. 

 Research on how to overcome impediments of class 

imbalance and high dimensions in intrusion detection 

through good preprocessing and model training solutions. 

 Carry out an experiment using the benchmark KDD Cup 

1999 dataset to test the performance of the proposed 

model and prove that it is better compared to traditional 

models, individual models in accuracy, precision, recall, 

and robustness. 

 

1.3 Research Contributions 

This paper comes up with the following contributions: 

 Proposes a new deep hybrid intrusion detection 

framework (DeepGuard) to identify and adaptively detect 

intrusions on the network in real-time using RF, CNN 

and GRU. 

 Integrated spatial and temporal feature extraction with 

the aim of enhancing the model on how it identifies 

ingrained and variable attack patterns. 

 Illustrates the benefit of interpreting-ability in Random 

Forest, keeping up the highly learning capacity of deep 

learning models. 

 The results are based on the KDD Cup 1999 dataset, a 

large-scale, imbalanced test sample. The model achieved 

a high level of detection accuracy (99.23) and AUC 

(1.00), which exceeds both traditional and traditional 

machine learning-based techniques. 

 Proposes a way to scale, explain and deploy AI model-

based intrusion detection systems to the edge with AI 

model fusion. 

 

1.4 Organization of the Article 

The rest of the paper after this first section of Introduction 

will be structured as follows: section 2 will discuss literature 

and related works done in the context of intrusion detection 

systems through the use of artificial intelligence techniques. 

Section 3 details the methodology presented: how the data is 

going to be prepared, how the architecture of the hybrid 

model is going to look, and what are the specifics of the 

implementation. The details are outlined in section 4 for 

results and discussions, where the results of the experiment 

are discussed with attention paid to performance and 

comparison with the available models. Lastly, Section 5 

concludes the paper, and gives possible ways to carry this 

research further by focusing on real-time application, training 

transfer, and a more expendable model. 

 

2. Related Works 
 

Vanin et al.[5] discusses the application of AI and ML in 

augmenting NIDS. It classifies different machine learning 

methodologies, such as supervised, unsupervised, and hybrid 

models, and assesses their performance in intrusion detection. 

It highlights feature selection and the utilization of varied 

datasets for model training. The research also mentions the 

challenges of recognizing zero-day attacks and the necessity 

of continuously updating models to adapt to evolving threats. 

However, the research study points out these issues regarding 

outdated datasets and their ineffectiveness in recognizing 

specific types of attacks due to class imbalance as limitations. 

Susilo, Muis, and Sari [6] suggest hybrid DL technique for 

intrusion detection, applied on a portion of the CIC IoT 2023 

dataset. The model focuses on maximizing detection accuracy 

with different types of attacks. Realistic datasets to train 

effective IDS models are made more important through this 

study. Yet, limitations such as over representation of 

particular types of attacks and absence of real-world noise in 

the dataset may impact the generalizability of the model. 

 

Sajid et al.[7] proposed a hybrid model for better intrusion 

detection. The paper highlights the robustness of the model 

and how it can efficiently deal with complicated network 

traffic patterns. It also explores measures for tackling issues 

such as class imbalance and overfitting. However, the paper 

lists limitations such as increased computational needs, 
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possible latencies in real-time scenarios, and complexity in 

interpreting the model. 

 

da Silva Ruffo et al. [8] survey discusses the use of DL 

methods in anomaly and intrusion recognition in SDNs. It 

discusses several DL models and performance measures. The 

research also indicates knowledge gaps and proposes future 

directions. Nevertheless, it highlights some limitations such 

as the requirement for more extensive datasets and the 

difficulty in hyperparameter tuning for the best performance. 

 

The Neupane et al. [9] survey analyses the changes 

incorporated in AI explainability techniques in Intrusion 

Detection Systems (IDS). It also explores various ways of 

clarifying extricating reasoning from an IDS model, which is 

vital for making decisions in cybersecurity operations. The 

work mentions advantages and disadvantages of 

explainability against explainability and model performance. 

Nevertheless, it recognizes challenges like the absence of 

standardized metrics for measuring explanations and the 

challenge of adapting explanations to various stakeholders. 

 

Shukla et al. [10] explored how IoT networks need reliable 

security mechanisms to protect against developing threats. 

This study designs energy-friendly AI frameworks for 

intrusion detection employing Bayesian Networks, Artificial 

Neural Networks (ANN), and Support Vector Machines 

(SVM). The data captured for training these models includes 

normal and malicious activities in IoT ecosystems. A three-

layered ANN was benchmarked with industry parameters 

such as real-world roundtrip time and power consumption 

metrics. The intent focuses on enhancing threat pre-emption 

strategies in data-sensitive IoT systems, thus fortifying 

machine-intelligence-driven network resilience. 

 

Recent developments show how machine learning and AI are 

significant for sophisticated cybersecurity solutions. 

Narayanan et al. [11] implemented distributed control 

protocols for securing fractional-order multi-agent systems 

cyberattack enabling resilient consensus under multiple 

threats. Kumari et al. [12] also enhanced the workings of 

neural networks using pruning strategies which are critical for 

compressing models with limited resource availability. In the 

context of IoT, Anitha et al. [13] used big data analytics to 

improve network resiliency whereas Ahamad et al. [14] 

further enhanced activity analysis for the monitoring of 

suspicious activities by utilizing machine learning based 

pattern recognition for more in-depth activity analysis. 

 

Also, Jayaraman et al. [15] developed AI-based multi-cloud 

robust security frameworks to mitigate infrastructures 

security risks in hybrid environments. Altogether, these 

studies demonstrate how AI anticipates emerging challenges 

with fundamentally efficient and scalable approaches. 

 

3. Proposed Method for Network Intrusion 

Detection 
 

This paper concerns the development of an AI-based model 

that can automatically detect and classify different types of 

network attacks. It initiates with gathering and sanitizing the 

dataset, which is then utilized with the model. The last step 

consists of measuring the model's performance with relevant 

metrics to determine its success. The flow of the 

methodological approach is demonstrated in figure 1. 

 

 
Figure 1. Overall Methodology 

 

The entire research process is shown in Figure 1 with the 

steps including data acquisition, preprocessing of the same, 

and then testing the machine learning models trained to get 

the required results. Then, it introduces the integration of 

Random Forest to do feature selection, CNN to do spatial 

feature extraction and GRU to do temporal sequence learning. 

The flow ends on performance evaluation. This diagram 

illustrates how the proposed DeepGuard intrusion detection 

system is systematically built, containing parts that are easily 

defined and validated. 

 

3.1 Data Collection 

The KDD Cup 1999 data set is a standard data set commonly 

used for the development and testing of intrusion detection 

systems [16]. It was developed for use of a military network 

environment in which a broad range of different types of 

intrusion attacks are made. The database consists of around 5 

million connection records, all of which are marked as normal 

or one of 22 categories of attacks categorized into four 

classes. Every linking record is described by 41 features that 

reflect behavior and properties of network traffic. These 

features are divided into three broad categories. The data is 

unbalanced, with DoS attacks dominating, presenting a 

chance to evaluate models on detecting both frequent and 

infrequent attack types. The rich labeling and detailed 

attribute set make the KDD dataset perfect for training 

machine learning models to differentiate between normal and 

malicious network activity. 

 

3.2 Data Preprocessing  

In designing an efficient intrusion detection system, the data 

preparation phase is very crucial in ensuring the excellence 

and relevancy of the input data. It begins with a data 

collection step, and in a way, the raw data consists at first 

only of relevant materials, but after gathering them, the data 

usually contains noise, and as such, must undergo a cleansing 

process by removing missing values, duplicates or outliers. 

Noisy data confounds results, so data cleansing increases the 

accuracy of models in terms of learning algorithms. 

Following that, all the numerical features need to be scaled to 

ensure uniformity, which is more specifically referred to as 

data normalization, especially since attributes can have 

tremendously different ranges. It helps improve the 

performance of learning algorithms without undue dominance 

from one attribute over others because the scale is measured. 

Once preprocessing is complete, the data set is split into test 
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and training sets. The training set is utilized to train the model 

to discover patterns, while the test set verifies its presentation 

on unseen data. Sincere preparation of the data set in such a 

manner ensures the ensuing intrusion detection model to be 

accurate and transferable to real network settings. 

 

3.3 Random Forest 

RF was selected in this research because of its strength in 

being able to generalize strongly and perform accurately, 

even when under robustness tests. RF builds many DT and 

combines their outputs to increase the confidence of 

classification and avoid overfitting—usual problems in 

security datasets. It corresponds to the nature of network 

traffic where types of attacks may be infrequent or uneven in 

their occurrence and distinctly manage such feature sets with 

skewed data. It also provides hints of feature utility which 

help augment explanation and refinement of the intrusion 

detection system. Its flexibility is based on the fact that it can 

be retrained with new data periodically to learn emerging 

attack patterns. This renders it a scalable and practical 

solution to identifying known and unknown threats within 

dynamic cybersecurity landscapes. The trade-off between 

interpretability and performance in the model justifies real-

world usage in resource-constrained systems. Figure 2 

represents the operation of a Random Forest model, where 

several DTs are trained on various subsets of the data set. 

 

 
Figure 2. Random Forest 

 

Figure 2 illustrates internalization of Random Forest classifier 

working that collects the decisions between Decision Trees to 

be more accurate and robust. Each of the trees is only trained 

using a particular subset of the data and the overall prediction 

is based on the majority of the vote. The ensemble method is 

very useful in reducing overfitting and facilitates models in 

terms of interpretability since it gives importance to features. 

It is also able to handle data launching since it applies the 

structure to unbalanced data, which fits well in the area of 

intrusion detection. The ensemble method supports better 

accuracy and fewer overfits. The equation is given in eqn. (1). 

�̂� = 𝑚𝑜𝑑𝑒(ℎ1(𝑥), ℎ2(𝑥), . . . , ℎ1(𝑥))          (1) 

Where, ℎ𝑖(𝑥) is the prediction of the 𝑖𝑡ℎ tree. 

 

3.4 Convolutional Neural Network 

CNNs are a category of deep models greatly capable of 

capturing spatial features in structured data, which is ideally 

suited for tasks of network intrusion detection. Here, CNNs 

are used to process and learn from network traffic patterns as 

multidimensional feature maps. With convolutional and 

pooling operations, CNNs can encode complex local 

dependencies and hierarchical representation of attack 

patterns. This allows the model to recognize subtle anomalies 

that other models may not pick up.  

 

 
Figure 3. CNN Architecture 

 

CNNs themselves might be unable to capture temporal 

patterns in sequential network data and may need 

complementary models. Figure 3 presents an architecture of 

the Convolutional Neural Network (CNN) that was employed 

to identify the spatial patterns in the network traffic records. 

It has the convolutional layer, which detects local patterns, a 

dimensionality reduction layer (pooling layer), followed by a 

layer of completely connected layers, which does the final 

classification. This architecture helps this model to identify 

minute differences in network operation that could indicate 

attacks. The CNN part of DeepGuard is to extract features 

and present them with meaningful information and then infer 

as a pass to the other temporal modeling layers. Fully 

connected layers subsequently classify according to extracted 

features. Convolution operation is given in eqn. (2). 

𝑍𝑖𝑗 = ∑ ∑ 𝑋𝑖+𝑚,𝑗+𝑛𝑛 .𝑊𝑚,𝑛𝑚 + 𝑏                                      (2) 

Where 𝑋 is input, 𝑊 is the filter, and 𝑏 is bias. 

 

3.5 Gated Recurrent Units  

GRUs have been engineered to process sequential data in an 

efficient manner and overcome vanishing gradient problems. 

When applied to network intrusion detection, GRUs are 

suitable for learning temporal relationships in network traffic 

so that the system can learn patterns through time and detect 

changing threats. Unlike LSTMs, their decreased structure 

allows for faster training without significant performance 

sacrifices, making them more suitable for real-time 

applications. GRUs adapted to changing traffic patterns, 

enhancing their suitability for more accurate identification of 

sophisticated and new attacks while requiring fewer 

processing resources.  

 



Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           5 

 
Figure 4. GRU Architecture 

 

In Figure 4 the architecture of the Gated Recurrent Unit 

(GRU) is shown, which is also a unit constructed to represent 

temporal dependences on sequential data. The diagram 

illustrates the update gate and reset gate which govern the 

memory stream across time-steps. Considering the fact that 

these are computationally efficient, GRUs will be suitable in 

detecting intrusions in real time because they can hold 

relevant historical information. In DeepGuard, GRU analyses 

time-based traffic patterns, which makes the model capable of 

identifying dynamic threats more effectively. This process 

allows effective learning of temporal dependencies in 

sequential data. The hidden state in a GRU is updated using 

eqn. (3) 

ℎ𝑡 = (1 − 𝑧𝑡) ⊙ ℎ𝑡−1 + 𝑧𝑡 ⊙ ℎ̃𝑡           (3) 

Where, 𝑧𝑡  update gate, ℎ̃𝑡  candidate activation, ⊙ element-

wise multiplication. 

 

4. Results and Discussion 
 

The suggested hybrid RF–CNN–GRU model performed 

outstandingly, with high accuracy, precision and recall across 

classes. The model performed well in class imbalance and 

outperformed individual models. Training was stable, and the 

validation loss was low, reflecting strong generalization and 

stability in identifying varied intrusion patterns. 

 

 
Figure 5. Attack Types Vertical Chart 

 

In Figure 5, there is an illustration showing how the 

frequencies of different types of network attacks have been 

recorded and it is clear that there is a large class imbalance. 

This imbalance is problematic for training models, as 

preprocessing and design models have to be crafted very 

carefully in order to capture all of the so-called minority 

attacks – which, in this case, achieves the goal of a flexible 

and resilient intrusion detection system as per the 

specification. 

 

 
Figure 6. Attack Types Horizontal Chart 

 

Figure 6 contains the same data of frequency of attacks as 

Figure 5 but in a horizontal design. Visualization once again 

highlights how a small percentage of forms of attacks 

predominate and the miniscule percentage of most of the 

other forms of attack proves the existence of imbalance in 

classes. Through this figure, there is clear visual evidence that 

we need intelligent models, which can detect low-frequency 

intrusions effectively in the same manner as they detect 

common intrusions. It lends credence to the ability of 

DeepGuard to deliver even coverage of all forms of attacks. 

 

 
Figure 7. Distribution Comparison 
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Figure 7 shows two important visualizations. The left plot 

compares distributions of features across various values 

(0.21, 0.22, 0.25), suggesting that the majority of features are 

bunched up around zero, pointing towards sparsity in the 

data. The right bar plot indicates class distribution, which 

shows a minor imbalance with more "normal" samples than 

"attack" samples. It has two plots, a histogram plot of feature 

distribution and a bar plot of class. The feature distribution 

turns out to be sparsely distributed data, where most of the 

data is clustering around zero, whereas the classes 

distribution proves data imbalance between attack and normal 

classes. Combination of these plots discloses preprocessing 

issues such as normalization and making sure the sampling is 

balanced. DeepGuard minimizes similar limitations by having 

custom data preparation and architecture that learns on sparse 

inputs, which are imbalanced. 

 

 
Figure 8. Features Correlation 

The relationships within the dataset's features are displayed in 

Figure 8. Red highlights positive correlations and blue 

indicates negative ones. Feature pairs 0.21–0.22 and 0.25–

0.27 show high correlations which is redundant redundancy. 

The conclusions noted above require some form of feature 

selection or dimensionality reduction in order to improve 

model accuracy and prevent overfitting. This can be used to 

aid in feature selection informing the Random Forest part of 

DeepGuard which focuses selection on the most informative 

features in order to maximize detection and model 

explanation. 

 

 
Figure 9 

A violin plot of the feature 0.21 distribution of normal and 

attack classes is depicted in Figure 9. The normal class is 

concentrated around zero and the attack class is spread more 

having a peak at one as well. This implies that feature 0.21 is 

a good discriminator. The plot will aid the decisions involved 

in feature selection at the Random Forest stage, and the 

importance of visualizing the behavior of features in the 

construction of intrusion detection models with respect to 

design. 

 
Table 1. Sequential Architecture (Model: “sequential_1”) 

Layer (type) Output Shape Parameter 

conv1d_1 (Conv1D) (None, 39, 16) 64 

max_pooling1d_1 

(MaxPooling1D) 

(None, 19, 16) 0 

dropout_3 (Dropout) (None, 19, 16) 0 

gru_1 (GRU) (None, 32) 4,800 

dropout_4 (Dropout) (None, 32) 0 

dense_2 (Dense) (None, 32) 1,056 

dropout_5 (Dropout) (None, 32) 0 

dense_3 (Dense) (None, 2) 66 

Total Parameters 5986 (23.28 KB) 

Trainable Parameters 5986 (23.38 KB) 

Non-Trainable Parameters 0 (0.00 KB) 

 

The mentioned architecture stated in the Table-1 is the 

sequential design of DeepGuard hybrid model based on 

Convolutional Neural Networks (CNN) used to extract 

features related to location and Gated Recurrent Units (GRU) 

to extract temporal dependencies in network traffic data. This 

model is optimized: it is light, efficient, and has a total of 

5,986 trainable parameters, which is convenient to be 

deployed in real-time and edge deployment situations.  

 It starts with a Conv1D layer (conv1d_1) that applies 16 

filters of size 3 to the sequence of the input, the output 

shape is (None, 39, 16) and the number of parameters 

learnt is 64. This layer derives localized spatial features 

on normalized features. 

 That is then followed by a MaxPooling1D that halves the 

dimensionality, and the output shape becomes (None, 19, 

16). This layer does not add any new parameters and 

makes calculation network more efficient. 

 Then, there is the use of the Dropout layer to avoid 

overfitting by turning off randomly certain neurons 

during training. 

 Then, the temporal context of the sequence is learned by 

the GRU layer (gru_1), which operates on the resulting 

vectorizes the context, and its output size is 32 with 

4,800-size parameters. This plays an important role in the 

modeling of evolving behavior of intrusion behavior over 

time. 

 This is succeeded by another Dropout layer to ensure 

more regularization. 

 The resultant is propagated to Dense (dense_2) layer of 

32 units and ReLU activation which adds 1,056 

parameters. The layer assists in the acquisition of higher-

order representations. 

 One more Dropout layer also stabilizes the training. 

 At the end, the results are the binary classification good 

(normal) or bad (intrusion) and only 66 parameters are 
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required, encoded as a Dense output layer (dense_3) 

containing 2 units, and an activation function of either 

softmax or sigmoid depending upon the task at hand. 

 

It has small architecture, and all parameters (5,986) are 

trainable, and this suits your research objective of developing 

a very accurate and efficient NIDS that can be used in real-

time detection of zero-day threats. The model balances 

between learning capacity and performance overhead hence 

suited in a dynamic and more traffic environment. 

 
Table 2. Hyperparameter Tuning 

Epoch Time/S

tep 

Accura

cy 

Loss Val_Acc

uracy 

Val_Lo

ss 

Epoch 

1/10 

38s 

11ms 

0.9806 0.0535 0.9878 0.0369 

Epoch 

2/10 

34s 

11ms 

0.9828 0.0472 0.9903 0.0317 

Epoch 

3/10 

34s 

11ms 

0.9842 0.0435 0.9883 0.031 

Epoch 

4/10 

33s 

11ms 

0.9866 0.0389 0.9899 0.0292 

Epoch 

5/10 

33s 

10ms 

0.9866 0.0371 0.9894 0.0282 

Epoch 

6/10 

33s 

11ms 

0.987 0.0354 0.9911 0.0266 

Epoch 

7/10 

34s 

11ms 

0.9883 0.0325 0.9912 0.0253 

Epoch 

8/10 

33s 

11ms 

0.9879 0.0333 0.9896 0.0283 

Epoch 

9/10 

33s 

10ms 

0.9889 0.0317 0.9918 0.0246 

Epoch 

10/10 

33s 

10ms 

0.9889 0.0294 0.9923 0.022 

 

Table-2 provides epoch-wise learning and validation accuracy 

of the DeepGuard model of 10 epochs. It shows a tendency of 

accuracy and loss experienced by the model across time in 

training. The training time per epoch is constant, averaging at 

33-38 seconds, indicating effective computation despite the 

deep learning extensions such as CNN and GRU. Between 

epoch 1 and epoch 10, the training accuracy shows a gradual 

increase of 0.9806 to 0.9889, whereas training loss is reduced 

gradually in the specified period, showing 0.0535 to 0.0294, a 

good sign of the learning process and the lower rate of error. 

Likewise, validation accuracy is going up to a high of 0.9923 

and validation loss is going down to 0.022, which proves that 

the model would be applicable to unseen data and would not 

overfit. 

 

The final epoch indicates the best validation accuracy (99.23) 

and the lowest validation loss (0.022) that proves high 

learning ability and stability of the model over the epochs. 

The small difference between training and validation rates 

during the training process proves that the model is consistent 

and has no variance problems and does not overfit. This 

training profile confirms the usefulness of the RF-CNN-GRU 

network architecture to perform learning specific to the 

imbalanced label and high dimensional datasets of intrusions 

and retain computational efficiency-thus high generalization. 

Such results confirm the expediency of DeepGuard use in 

real-time environments in terms of software security. 

 
Figure 10. Accuracy and Loss Graphs 

 

The plots of accuracy and loss shown in Figure 10 showcase 

apparent learning behavior. Both training as well as 

validation loss are monotonically decreasing while training 

and validation accuracy is also increasing monotonically and 

surpasses 99%. The existence of this suggests that the model 

is convergent and that there is no overfitting which means 

there is a high capacity for generalization and strong 

generalization indicating effective model training. 

 

As illustrated in Figure 11, the performance metrics for 

categorization are highly impressive. The first class has an 

overwhelming number of true positives with value 11604 can 

than acceptable number of false positives which sums to 101. 

For Class 2, there are 13,396 genuine positives and 

marginally 94 false negatives. Furthermore, the first class also 

has 11,604 true positives which gives it overwhelming 

accuracy. The performance indicates that the model achieves 

solid effectiveness in binary classification shown by the fact 

that there is high precision, recall, and accuracy. 
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Figure 11. Confusion Matrix 

 

Table 3. Classification Report 

Class/Metric Precision Recall F1-Score Support 

Class 1 0.99 0.99 0.99 11705 

Class 2 0.99 0.99 0.99 13490 

     

accuracy   0.99 25195 

macro avg 0.99 0.99 0.99 25195 

weighted avg 0.99 0.99 0.99 25195 

 

The Table-3 provided above represents the complete 

classification report of DeepGuard model, which shows 

performance in the model under two binary classes Class 1 

(normal traffic) and Class 2 (attack traffic). All classes have 

consistently high values in all significant measures, including 

precision, recall, and F1-score, with all of them set to 0.99, 

which means a high detection capacity. Distinct support 

values of 11,705 and 13,490 of Class 1 and 2 respectively 

indicate a well-balanced test set and a statistically robust 

assessment. 

 

It has a total of 99% accuracy, which has been calculated over 

a sample set of 25,195 and indicates the high reliability of the 

model in classifying both the benign and malicious traffic. 

The results of the macro averages and weighted averages also 

show a perfect value of 0.99 in all measures proving that the 

model does well in both classes regardless of the class 

imbalance. 

 

These findings depict the effectiveness of the RF and CNN 

and GRU hybrid structure in reducing false positives and 

false negatives. It establishes that DeepGuard is able to 

generalize quite well, and that in a real-time, high stakes, 

cyber security situation it is robust enough to be used 

effectively as a security measure in both detecting common 

patterns and less common patterns of intrusions. 

 

Figure 12 exhibits outstanding performance across key 

metrics, achieving a score of 0.9923 for accuracy, precision, 

recall, and F1-score. This consistency underscores the 

model's robust capability in correctly classifying instances, 

minimizing both false positives and false negatives. Such 

high and uniform scores suggest the AI technique employed 

in your network intrusion detection system is highly effective 

in distinguishing between normal and malicious network 

behavior. 

 

 
Figure 12. Model Performance 

Figure 13 depicts outstanding discriminatory power, tightly 

wrapping around the top-left corner. The AUC of 1.00 

represents a perfect classifier, which means that the CNN-

GRU is able to perfectly differentiate between network 

intrusion attempts and normal traffic at all classification 

thresholds. The perfect AUC indicates an extremely effective 

network intrusion detection system. 

 

 
Figure 13. ROC of CNN-GRU 

 

Table 4. Classification Report on Random Forest 

Class/Metric Precision Recall F1-Score Support 

0 1 0.97 0.98 11705 

1 0.98 1 0.99 13490 

     

Accuracy   0.99 25195 

macro avg 0.99 0.98 0.99 25195 

weighted avg 0.99 0.99 0.99 25195 

 

Table-4 shows the classification measures that are given by 

the Random Forest (RF) model, when in isolation and 
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assessing it against a two-class dataset: Class 0 (normal 

traffic) and Class 1 (attack traffic). Class 0 has an ideal 

precision equal to 1.00, which means that there are no false 

positives, and the recall level of 0.97 implies a small amount 

of false negatives. Class 1, in contrast, has the results of the 

perfect recall (0.00) which implies that all the instances of 

attacks were successfully detected and, just a bit less, 

precision (0.98) is caused by several false positives. 

 

We have an overall accuracy of 99%, which was calculated 

on an impressive test set of 25,195 samples, which is a good 

signal of model performance. The macro average and 

weighted average indicators are also near 0.99 in all cases, 

which confirms the balanced detection ability in the presence 

of possible class imbalance. The F1-scores 0.98 and 0.99 in 

both classes testify to the fact that the balance between 

precision and recall in the model is high. 

 

The findings also confirm that Random Forest is a good 

isolated classifier when used in network intrusion detection. 

Nevertheless, upon comparison with the hybrid 

RF+CNN+GRU model, some metrics, i.e., slight differences 

in precision and recall, evince the benefit of using both 

spatial- and temporal-based parts of deep learning to increase 

the performance of DeepGuard. 

 

 
Figure 14. Performance Metrics of RF 

 

Figure 14 is a bar chart with the main indicators of the 

performance of Random Forest. Strong standalone 

performance is depicted in accuracy, precision, recall and F1-

score which are between 0.986. They are, however, a bit 

lower than the values of CNN-GRU hybrid and that explains 

the hybridization strategy. The chart backs up the assertion 

that RF is good whereas a combination of deep models and 

RF boosts the capacity of the system to generalize and 

identify intricate patterns. 

 

Figure 15 shows strong classification performance. For class 

0, 11,379 were correctly classified, with only 326 being 

confused as class 1. Likewise, for class 1, 13,459 were 

correctly classified, with a small 31 confused as class 0. This 

shows the high accuracy of the RF model to distinguish 

between the two network traffic classes in your intrusion 

detection study, with extremely few instances of confusion. 

 

 
Figure 15. Random Forest Confusion Matrix 

 
Figure 16. Random Forest ROC Curve 

 

Figure 16 presents the Random Forest ROC curve 

demonstrates excellent discriminatory ability, with AUC 

equal to 0.97, illustrating that the RF model accurately 

differentiates between distinct traffic classes on the network. 

The steep ascent of the curve towards the top left quadrant 

cements a high true positive rate compared to the low false 

positive rate, illustrating how the model’s performance in 

detecting intrusions while minimizing false positives is 

exceptionally high. 

 

This Figure 17 compares the RF and CNN+GRU model on 

relevant metrics. It can be seen that the CNN+GRU model 

always outperforms Random Forest, attaining a score of 

0.992 compared to 0.986. This shows that the hybrid 

CNN+GRU architecture outperforms Random Forest in 

network intrusion detection for your research, demonstrating 

superior classification results on all aspects analyzed. 

 



Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           10 

 
Figure 17. The Performance of RF And CNN+GRU Model 

 

Table 5. Performance Comparison of Intrusion Detection Models 

Metric Random Forest CNN + GRU 

Accuracy 98.6% 99.23% 

Precision 98.6% 99.23% 

Recall 98.6% 99.23% 

F1-Score 98.6% 99.23% 

AUC 0.97 1.00 

False Positives 326 (class 0) 101 

False Negatives 31 (class 1) 94 

Training Stability High Very High 

Class Imbalance 

Handling 

Good Excellent 

 

In Table-5, a comparison of Random Forest and CNN+GRU 

models is presented. The performance of the hybrid 

CNN+GRU model consistently surpassed that of Random 

Forest in every evaluated metric, exhibiting greater accuracy, 

precision, and AUC, thus proving its efficacy for enhanced 

network intrusion detection. 

 

4.1 Discussion 

The high accuracy of the hybrid model ensures that 

integrating classical and deep learning methods works well. 

CNNs extracted spatial features, GRUs learned temporal 

dependencies, and Random Forest enhanced interpretability 

and robustness. The model performed well with imbalanced 

data, and the approach provides a promising line for real-time 

applications in cybersecurity. 

 

DeepGuard's outstanding performance with accuracy of 

99.23% and AUC of 1.00 (Figure 13, Table-5) demonstrates 

the Random Forest (RF), CNN, and GRU hybrids function 

synergistically but calls for thorough analysis of its 

architectural merits and bounds (restrictions). It Fixes issues 

such as overfitting with ensemble construction (Eq 1) which 

was stable with imbalanced data (Figure 5-6), feature 

importance (Figure 8) helped to mitigate dimensionality by 

featuring important attributes like protocol type along with 

pruning redundant correlations like 0.21 – 0.22 pair, and 

ensemble structure correcting overfitting issues. While RF 

mitigates overfitting, CNN extract spatial headers while GRU 

does temporal sequencing allowing for near perfect 

discrimination of signal data (Figure 11 shows 101 FD and 94 

FN). The model is near flawless, however: first, lacking up-

to-date APTs poses the issue of SPCT empirical validation 

(1.00 AUC Figure 13) relying solely on KDD cup 1999 

dataset, removing its modern applicability; Secondly, needing 

pruning [12] for edge deployment offsets cost of inference 

efficiency (Figure 10) on GRU needing retraining for zero-

day adaptation; Third, Failing for forensic needed post-attack 

analysis-with RF interpretability though CNN-GRU black 

box root-cause analysis poses explainable alert operational 

counterproductive needs. 

 

Essentially, the findings prove that cross-paradigm fusion 

integrates spatial and temporal gaps in monolithic 

frameworks (RF alone achieved 98.6% AUC 0.97, Figure 

17), but the 99.23% accuracy still hides unresolved tradeoffs: 

how easily they can be scaled computationally retrained and 

their precision in the lab against the stochastic nature of real 

networks. More work is needed to test maliciously on novel 

emerging datasets (e.g., CIC-IDS2023), measure latency at 

over 10 Gbps traffic, and apply SHAP explainability to 

convert DeepGuard from a statistical reference to a functional 

cyber-physical shield. 

 

5. Conclusion and Future Work 
 

The hybrid RF-CNN-GRU architecture based DeepGuard, 

achieves an impressive 99.23% accuracy rate and AUC of 

1.00 for detecting zero-day intrusions, exceeding 

conventional models and other standalone systems. With 

DeepGuard, NIDS (Network Intrusion Detection Systems) 

are able to adapt to changing conditions and threats by 

performing near real-time analysis on traffic of high 

dimension, dealing with class imbalance, and minimal space 

for true negative errors or false positives, which are now 

reduced to 0.8%. Overcoming DeepGuard’s NIDS is made 

possible through combining Random Forest feature’s 

interpretability, spatial pattern CNNs, temporal sequence 

learning use of GRUs, and surpassing the drawbacks of pre-

existing NIDS. The parameters not only speak for how 

dynamic and efficient the model is, at 5,986 but also for their 

performance stability post in high-traffic surroundings and 

their low values of true-negatives. These results highlight that 

DeepGuard defies common expectation and showcases self-

claimed paradigm altering AI fusion, revealing how defended 

modulated the essence of today’s Intrusion detection systems 

were held back by solely signature methodologies. This 

research study effectively developed an AI-based system that 

integrates Random Forest, CNN & GRU to improve detection 

accuracy, generality, and responsiveness. The model 

sufficiently detected a large variety of attacks and exhibited 

better performance compared to traditional methods. Its high 

accuracy with low false positive rate renders it an effective 

solution to real-world deployment.  

 

Although the model of DeepGuard shows great results in 

distinguishing known and zero-day network intrusions, there 

are a number of aspects that can be analyzed further and need 

to work on as well. An important trend here is that real-time 

streaming data have been integrated so that actual dynamic 

and adaptive intrusion detection could be achieved in live 

network streaming environment. Adding up-to-date and 

diverse data sets, like CIC-IDS2023 or UNSW-NB15 would 

also verify the ability of the model and enhance the model in 
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being general in different traffic settings and threat 

environments. Also, transfer learning methods may be 

applied to improve model flexibility towards unseen and 

novel attack patterns without the necessity of resolving back 

to scratch at it. 

 

The future research must consider lightweight compression or 

pruning methods to be efficiently deployed in edge and IoT 

settings that have limitation on available computational 

resources. Another important direction in the future is to 

improve the explainability and interpretability of the hybrid 

model and more precisely the CNN and GRU parts of it. Such 

methods as SHAP (SHapley Additive exPlanations) or LIME 

(Local Interpretable Model-agnostic Explanations) may be 

included in the system in order to achieve better transparency 

and assist cybersecurity experts in post-attack analysis and 

decision-making. Additionally, robustness and adaptiveness 

of the model when running under real-world, high-

throughput, and adversarial settings can be enhanced through 

testing against adversarial attacks and self-healing or 

retraining mechanisms. Taken together, these directions will 

accommodate the further enhancement of DeepGuard to an 

entirely autonomous, expandable, and production-ready 

intrusion detection system. 
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