
© 2025, IJSRCSE All Rights Reserved 95

International Journal of Scientific Research in

Computer Science and Engineering
Vol.13, Issue.3, pp.95-103, June 2025

E-ISSN: 2320-7639

Available online at: www.isroset.org

Review Article

A Comprehensive Review of AI-Driven Software Engineering: Challenges,

Opportunities, and Future Directions

Medhunhashini D R1* , K S Jeen Marseline2 , Ramya U 3

1,2,3Dept. of IT & Cognitive Systems, Sri Krishna Arts and Science College, Coimbatore, India

*Corresponding Author: ✉

Received: 22/Apr/2025; Accepted: 23/May/2025; Published: 30/Jun/2025. | DOI: https://doi.org/10.26438/ijsrcse.v13i3.692

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International

License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract— The integration of Artificial Intelligence (AI) into Software Engineering (SE) has significantly transformed the

landscape of software development, offering potential for enhanced efficiency, automation, and innovation across various stages

of the software lifecycle. This review explores the current state of AI-driven software engineering, focusing on the

advancements made from 2020 to 2025. We categorize state-of-the-art research into key application areas, including code

generation, bug prediction, test case generation, software maintenance, and project management, highlighting AI’s impact in

automating routine tasks, improving code quality, and assisting developers in decision-making processes.AI tools such as

GitHub Copilot and Codex are revolutionizing code generation by leveraging large language models to produce code snippets,

entire functions, and even full programs, reducing the burden on developers. In addition, AI-driven bug prediction models are

aiding developers in identifying potential issues earlier, improving defect detection and prioritization. Test case generation tools

like EvoSuite and Diffblue Cover automate unit test creation, enhancing testing efficiency and ensuring better code coverage. AI

also contributes to software maintenance by suggesting improvements and optimizations, thereby improving long-term code

quality and sustainability. Furthermore, AI is being used in project management for sprint planning, risk prediction, and resource

allocation. Despite these advancements, challenges such as explainability, data quality, tool integration, and ethical concerns

remain significant. This review discusses these challenges and proposes future research directions, including human-in-the-loop

systems and hybrid approaches combining symbolic reasoning with neural models. We also emphasize the need for continuous

research to ensure AI becoming a reliable, ethical, and effective partner in software engineering.

Keywords— Software Engineering, Artificial Intelligence, Bug Prediction, Ethical Concerns, Machine Learning

Graphical Abstract

1. Introduction

The field of software engineering is undergoing a

transformative shift with the integration of Artificial

Intelligence (AI) technologies. AI-driven tools and

methodologies are increasingly being adopted to enhance

various aspects of the software development lifecycle,

including code generation, testing, maintenance, and project

management[1]. This evolution is not only reshaping

traditional development practices but also redefining the roles

of software engineers in the AI era. Recent advancements

have led to the emergence of AI-powered code assistants,

such as GitHub Copilot, Amazon CodeWhisperer, and

Windsurf, which leverage large language models (LLMs) to

assist developers in writing code more efficiently[2]. These

tools have demonstrated significant potential in improving

productivity and reducing the time required for software

development tasks. For instance, Microsoft reported that up to

http://www.isroset.org/
mailto:medhun.hashini@gmail.com
https://doi.org/10.26438/ijsrcse.v13i3.692
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-6418-8159
https://orcid.org/0000-0003-3322-8207
https://orcid.org/0009-0005-3080-9868

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 96

30% of its code is now written by AI, highlighting the

growing reliance on AI in software engineering processes.

Despite these advancements, the integration of AI into

software engineering presents several challenges. Concerns

regarding the explainability of AI-generated code, potential

biases in AI algorithms, and the ethical implications of AI-

driven development are increasingly coming to the forefront.

Moreover, the rapid adoption of AI tools necessitates a re-

evaluation of existing software engineering practices to

ensure they align with the evolving technological landscape.

This review paper aims to provide a comprehensive overview

of the current state of AI-driven software engineering. It will

explore the various applications of AI in software

development, analyze the challenges associated with its

integration, and discuss potential future directions for

research and practice. By examining both the opportunities

and obstacles presented by AI, this paper seeks to offer

insights into how software engineering can adapt to and

thrive in an AI-enhanced environment.

1.1 Overview of Software Engineering

Software engineering (SE) is a discipline that encompasses

the systematic application of engineering principles to the

development, maintenance, and management of software

systems. It covers various activities including requirements

analysis, design, implementation, testing, deployment, and

evolution. Over the decades, SE has evolved to meet the

increasing complexity and scale of software systems,

embracing new paradigms such as agile methodologies,

DevOps, and continuous integration/continuous deployment

(CI/CD). Despite these advancements, traditional SE

processes remain labor-intensive and often susceptible to

human error, inefficiency, and inconsistencies[3].

1.2 Rise of AI and Machine Learning in Software

Engineering

In recent years, the advent of Artificial Intelligence (AI) and

Machine Learning (ML) has triggered a paradigm shift in

software engineering. AI-powered tools are now capable of

automating critical SE tasks such as code generation, defect

prediction, test automation, and maintenance. For example,

large language models like OpenAI Codex and Code Llama

have demonstrated the ability to write syntactically correct

and contextually relevant code snippets from natural language

prompts[4]. Similarly, ML algorithms are increasingly used

to predict bugs, prioritize tests, estimate project risks, and

recommend code improvements. This integration of AI into

SE processes is leading to the emergence of a new domain

often referred to as AI-driven software engineering.

1.3 Motivation for the Review

The integration of AI into SE offers significant promise, it

also introduces new challenges and complexities. There are

growing concerns around trustworthiness, explainability, data

privacy, and over-reliance on black-box models. The SE

community faces a fragmented landscape where tools,

datasets, and methodologies are rapidly evolving but often

lack standardization and interoperability. There is a pressing

need to understand the state of the art, identify gaps in current

research, and explore potential pathways for the future. This

review is motivated by the need to provide a structured and

critical examination of how AI is reshaping SE and what it

means for practitioners and researchers moving forward.

1.4 Scope and Contributions of the Paper

This review paper examines the diverse applications of

Artificial Intelligence (AI) throughout the software

engineering (SE) lifecycle, including code generation, testing

and quality assurance, defect prediction, software

maintenance, and project management. By surveying research

contributions from 2020 to 2025, the paper highlights both

academic advancements and industrial tools that have

contributed to the field. The key contributions of this paper

include a comprehensive categorization of AI-driven

techniques applied to various SE activities, offering a clear

overview of the current state of AI in software engineering.

Additionally, a comparative analysis of the leading tools and

methods is provided, emphasizing their strengths and

limitations to give a balanced perspective on their

effectiveness. The paper also addresses the emerging

challenges in AI for SE, such as the lack of explainability,

ethical concerns regarding data usage and bias, and the

difficulties in integrating AI tools with traditional

development workflows. Finally, the paper identifies open

research questions and proposes future directions, aiming to

guide the continued evolution of AI-enhanced software

engineering practices.

2. Literature Review

The incorporation of AI into Engineering process has sparked

significant interest in both academia and industry, driven by

the promise of automation, scalability, and efficiency. The

below literature review shows some prominent discussion on

the AI into SE.

[5]conducted a comprehensive survey on data collection and

labeling challenges in SE. They emphasized the limited

availability of high-quality labeled datasets and the pervasive

issues of data inconsistency and noise, which hinder the

machine learning model’s training and testing.[6]

systematically reviewed explainable AI (XAI) methods

tailored to software engineering. Their findings indicate that

developers often distrust black-box AI tools due to the lack of

transparency in decision-making, which is especially

problematic in safety-critical systems.

 [7] highlighted the hallucination problem in code

generation and bug prediction models, where syntactically

correct but semantically flawed code is generated. They

propose validation methods such as static analysis and

automated testing to mitigate these risks[8] investigated the

integration challenges of AI tools with conventional SE

environments. Their study points to compatibility issues, the

inertia of legacy systems, and the need for low-friction

deployment mechanisms.[9] reviewed the legal and ethical

ramifications of AI in SE. Key concerns include copyright

violations from training data, lack of attribution, and inherent

biases within models that can impact fairness and trust. [10]

presented a case study on automating bug prediction using

labeled data. They demonstrated how ML models trained on

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 97

bug-labeled repositories can enhance bug detection accuracy

and reduce manual inspection efforts[11] explored techniques

for making AI decisions interpretable in SE tasks. They

advocated for approaches like attention maps and rule

extraction to bridge the gap between model output and

developer understanding. [12] discussed transfer learning’s

potential in code quality prediction. By fine-tuning models

like BERT on domain-specific repositories, they showcased

significant performance gains even with limited labeled data.

[13] surveyed reinforcement learning (RL) applications in

software testing. RL has shown promise in optimizing test

case execution and automated code repair, though defining

reward functions and ensuring convergence remain

challenges. [14] examined ethical issues in AI-assisted code

generation. Their paper stressed the importance of transparent

attribution, license compliance, and mitigation of encoded

biases to ensure responsible AI deployment in SE contexts.

These studies collectively illuminate the complex landscape

of applying AI in SE. They underscore the necessity for

robust datasets, interpretable models, seamless tool

integration, and a solid ethical foundation to support the

sustainable adoption of AI technologies in software

development.

3. Key Application Areas

The integration of AI into software engineering has led to

significant innovations in different SDLC life cycle stages of

software engineering. This section discusses five key

application areas where AI technologies are making the most

impact: code generation, bug prediction, test case generation,

software maintenance, and project management.

3.1 AI for Code Generation

AI-powered code generation is one of the most transformative

innovations in recent software engineering. Tools like GitHub

Copilot, powered by OpenAI Codex, and Amazon

CodeWhisperer utilize large language models (LLMs) trained

on billions of lines of code to generate context-aware code

suggestions in real time[14].These tools function as

intelligent code assistants, helping developers write functions,

complete boilerplate code, and even suggest entire class

structures based on natural language comments. Initial

evaluations suggest that Copilot can improve developer

productivity, with studies indicating that developers using AI

code assistants complete tasks faster and with fewer

errors.AI-driven tools for software engineering present

several challenges that need to be addressed for their

widespread adoption. One key issue is that generated code

may inadvertently introduce subtle bugs or security

vulnerabilities, which could go unnoticed during automated

processes. This poses significant risks, especially in mission-

critical applications where precision and reliability are

essential. Additionally, AI models trained on large datasets

may inadvertently replicate licensed or vulnerable code,

potentially leading to legal concerns or the unintentional

inclusion of insecure practices. Another challenge is the lack

of explainability in the generated code, as AI systems often

operate as "black boxes."[15] This lack of transparency can

reduce developer trust in AI-generated solutions, making it

difficult for them to understand the rationale behind

suggestions and verify their correctness. As a result,

developers may hesitate to fully rely on AI tools for critical

tasks, especially when dealing with complex or sensitive

software projects..

3.2 Bug Prediction and Localization

Machine Learning (ML) techniques have become

instrumental in predicting defect-prone code modules and

localizing bugs, significantly enhancing software quality

assurance efforts. These models leverage static code metrics,

such as cyclomatic complexity and churn rate, alongside

historical defect data to train classifiers like decision trees,

support vector machines (SVM), and neural networks.

Popular tools and methods in this domain are listed in Table

3. It includes DeepLoc, which employs deep learning

algorithms to locate bugs with greater precision at a granular

code level, and BugLocator, which combines information

retrieval techniques and code history to effectively identify

fault locations[16].

Another prominent approach is ML4SE, a framework that

integrates ML pipelines into the Continuous

Integration/Continuous Deployment (CI/CD) process,

automating defect prediction and bug localization as part of

the software delivery lifecycle. The impact of these tools is

significant: by identifying vulnerable areas early, they enable

developers to keep attention on their testing and code back

walk efforts on the most critical parts of the code, thereby

reducing the time spent on debugging and rework. This leads

to faster development cycles and more reliable software,

ultimately improving both code quality and productivity.

Table 1. Bug Prediction Tools

Tool/

Method

Approach Key

Features

Strengths Limitations

DeepLoc Deep

learning-

based bug

localization

Uses deep

learning

models to

pinpoint

bugs at a

fine-

grained

code level

High

precision in

identifying

bugs, fine-

grained

localization

Requires large

labeled datasets

for training,

computationally

intensive

BugLocator Information

retrieval +

code history

Combines

historical

defect data

and

information

retrieval

for fault

localization

Efficient in

leveraging

code

history,

adaptable to

various

codebases

May struggle

with codebases

lacking

historical data

or complex

patterns

ML4SE Machine

learning

pipeline

integration in

CI/CD

Integrates

ML models

within

CI/CD

processes

to automate

defect

prediction

Seamless

integration

with CI/CD

workflows,

continuous

defect

prediction

Limited by the

quality and

scope of

training data in

CI/CD

pipelines

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 98

3.3 Test Case Generation

AI is playing a transformative role in enhancing test

automation, particularly through the generation of automated

test cases. AI models are now capable of parsing natural

language requirements, user stories, or even UI interactions to

automatically generate corresponding test scripts using

popular tools like Selenium or Appium. This advancement

streamlines the testing process and significantly reduces

manual effort. Notable examples of AI-driven test automation

tools include Diffblue Cover, which uses symbolic AI to

automatically generate unit tests for Java code, and EvoSuite,

which leverages evolutionary algorithms to create high-

coverage JUnit tests[17]. These tools not only save valuable

time by automating the creation of test cases but also ensure

greater test coverage, allowing for early detection of bugs that

might otherwise be missed in manual testing. Additionally,

AI-driven test automation enhances continuous testing,

particularly in agile workflows, by enabling faster feedback

cycles, improving code quality, and ensuring that new

features are properly tested throughout the development

process. This results in more efficient software development,

with improved test reliability and quicker identification of

issues.

3.4 Software Maintenance and Refactoring

AI tools are increasingly being utilized in the maintenance

and improvement of legacy systems, offering significant

advantages in terms of code quality and efficiency. Machine

learning-based tools can automatically suggest opportunities

for code refactoring, detect code smells, and even recommend

security patches, helping to keep legacy systems robust and

up-to-date. Key tools in this domain include Facebook

Aroma, a code-to-code search engine that identifies reuse

opportunities within existing codebases, and Refactory.AI,

which suggests restructuring options for complex or

duplicated code, making it easier to maintain and scale.

Additionally, AI-based linters can detect performance

bottlenecks and recommend optimization patterns,

contributing to enhanced system performance. However,

despite these benefits, there are challenges. One limitation is

the context sensitivity of AI tools, as they may not fully

understand the specific requirements or constraints of the

legacy system, potentially leading to less accurate

suggestions. Furthermore, there is a risk of introducing

regressions during automated refactoring, as AI-driven

changes may inadvertently break existing functionality or

create new issues that were not anticipated. As a result, while

AI tools can be valuable in legacy system maintenance,

careful consideration and manual validation remain essential

to ensure the reliability of the refactorings.

3.5 Project Management

AI is increasingly being leveraged in software project

management, particularly in automating critical activities

such as planning, effort estimation, and risk assessment. By

analyzing historical project data, AI models can accurately

forecast delivery timelines, estimate the required effort, and

optimize resource utilization. Key applications of AI in

project management include effort estimation models that use

regression and time-series forecasting to predict the time and

resources needed for various tasks, improving the accuracy of

project planning. Additionally, sprint planning assistants

powered by natural language processing (NLP) analyze issue

trackers and recommend optimal workloads for development

teams based on project requirements, team capacity, and past

performance. AI is also being used for risk prediction, where

patterns in delay history and developer activity logs are

analyzed to forecast potential bottlenecks or risks in the

project, allowing proactive mitigation strategies[18]. The

benefits of AI in project management are significant: it

enables data-driven decision-making, where predictions and

recommendations are based on real project data rather than

gut instinct or guesswork. AI also helps reduce project

overruns by providing more accurate timelines and effort

estimations, leading to fewer unexpected delays. Moreover,

by analyzing team performance and resource utilization, AI

enhances resource allocation, ensuring that teams are working

efficiently and effectively, ultimately leading to more

successful project outcomes.

4. Emerging Techniques

AI adoption deepens in software engineering, newer and

more sophisticated techniques are emerging. Among the most

influential are Large Language Models (LLMs), transfer

learning, and reinforcement learning, which are pushing the

boundaries of automation, code understanding, and adaptive

decision-making.

4.1 Use of Large Language Models (LLMs)

Large Language Models (LLMs) such as GPT-4, Code

Llama, and PaLM-Coder are transforming the landscape of

software engineering automation. These models, trained on

vast amounts of source code and documentation, possess the

ability to understand programming languages, developer

intent, and natural language instructions with a level of

sophistication previously unattainable.

Their capabilities are pushing the boundaries of what can be

automated in software development, offering applications that

enhance productivity and ease of development. For example,

code completion and synthesis powered by GPT-based

models can generate functions, documentation, and even

entire applications based on minimal input from developers,

drastically reducing development time. Additionally,

conversational debugging allows LLMs to assist developers

interactively by explaining errors, suggesting fixes, or even

refactoring code in real time, enhancing the debugging

process. Requirements analysis is another area where LLMs

excel; they can extract structured specifications from

unstructured user inputs or legacy documents, streamlining

the process of gathering and understanding project

requirements.

Despite their impressive capabilities, there are several

limitations to consider. LLMs are prone to hallucinations,

meaning they can generate code with syntactic or semantic

errors that may not be immediately apparent. Additionally,

their high computational cost and resource requirements

make them challenging to implement in resource-constrained

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 99

environments. Moreover, there are significant legal and

ethical concerns surrounding the training data used to develop

these models, in regard to copyright, data confidentiality, and

the potential for biases in the generated code. These

limitations must be addressed to ensure that LLMs can be

effectively and responsibly integrated into software

engineering workflows[19].

4.2 Transfer Learning and Fine-Tuning for SE Tasks

Transfer learning has become a powerful technique in

software engineering, particularly for tasks where high-

quality labeled datasets are scarce. By allowing pre-trained

models to adapt to new tasks with minimal additional data,

transfer learning addresses one of the major challenges in

software engineering— the lack of comprehensive, domain-

specific datasets. This approach is especially beneficial for

tasks like code summarization, bug detection, and software

maintenance. For instance, fine-tuning a general-purpose

LLM like GPT or BERT on domain-specific data from

software repositories (such as GitHub or Stack Overflow)

allows the model to better understand software-related

language and concepts without requiring a vast amount of

labeled data. Additionally, specialized models like

CodeBERT and GraphCodeBERT are already pre-trained on

large codebases and can be fine-tuned for tasks like code

summarization, clone detection, and code search, offering

substantial improvements in performance for niche software

engineering tasks[20].

The key benefits of transfer learning in software engineering

include a significant reduction in the need for task-specific

model training from scratch, making it much more resource-

efficient. Moreover, transfer learning has shown to improve

performance on specialized software engineering tasks, such

as predicting CI failures or identifying technical debt, by

leveraging pre-existing knowledge learned from large

datasets. Finally, transfer learning supports cross-language

code understanding and translation, enabling models to bridge

gaps between different programming languages, improving

their versatility and applicability in multi-language software

environments. As a result, transfer learning has proven to be a

valuable tool in enhancing the automation and accuracy of

software engineering processes, particularly in resource-

constrained settings.

4.3 Reinforcement Learning in Software Automation

Reinforcement Learning (RL) is making significant strides in

software engineering (SE) automation, particularly in

scenarios that involve iterative decision-making and

feedback-driven processes. In SE, RL agents learn to

optimize tasks through trial-and-error interactions with their

environments, such as compilers, test systems, or

development platforms. These agents are designed to take

actions that maximize long-term rewards based on feedback

from the environment, making RL a powerful tool for

automating and improving various software engineering

processes. Some prominent use cases of RL in software

automation include test case prioritization, where RL agents

learn to identify and execute the most fault-revealing tests

first, helping to detect defects early in the development cycle.

Another application is automated code repair, where RL

agents are rewarded for generating compliable and correct

patches, offering a potential solution for bug fixing with

minimal human intervention. Additionally, software

optimization is another area where RL excels; agents can

optimize code performance or energy efficiency by adjusting

compiler flags or restructuring loops to find the most efficient

configuration[21].

There are several challenges that need to be addressed for RL

to reach its full potential in software engineering. One key

challenge is defining meaningful reward functions that align

with the goals of the task and provide useful feedback to the

agent. Additionally, there is a need to balance exploration and

exploitation in large and complex code spaces, where the

agent must explore different actions to find optimal solutions

without getting stuck in suboptimal local decisions. Finally,

slow convergence in real-world environments remains a

challenge, as RL agents often require significant amounts of

training time and computational resources to achieve

satisfactory results, particularly in complex software systems

with numerous variables.

Despite these challenges, the use of RL in software

automation holds great promise, offering the potential to

improve efficiency, accuracy, and innovation in software

development.

5. Challenges in AI Models

5.1 Data Availability and Labeling

AI models especially those based on deep learning, will be in

need for big data to ensure smooth and validated training. In

software engineering, however, such datasets are often

difficult to obtain. Many datasets are scattered across various

repositories like GitHub or Bitbucket, which means data

needs to be manually aggregated from different sources.

Moreover, the quality of the data can vary significantly; for

example, commit messages may be noisy or ambiguous, and

issue trackers can be incomplete or inaccurately labeled. This

inconsistency complicates the creation of reliable datasets for

training AI models. Additionally, for tasks like bug-fix

localization or intent classification, labeled data can be

particularly sparse, making it hard to train models effectively.

Manual labeling of software artifacts, such as tagging defects

or annotating code behavior, is a time-consuming and

domain-specific task that limits the scalability of supervised

learning approaches. These challenges underscore the need

for innovative data collection and labeling strategies to enable

effective AI deployment in software engineering.

5.2 Explainability and Trustworthiness

One of the most significant barriers to the adoption of AI in

software engineering is the lack of explainability in the

decision-making process of AI models. Developers are often

hesitant to trust AI-generated code, bug predictions, or test

cases if the rationale behind the decisions is not transparent.

Many black-box models provide little to no traceability,

making it difficult for developers to debug or validate AI

suggestions. This lack of interpretability can be particularly

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 100

problematic in safety-critical systems, such as those used in

aerospace or finance, where regulatory standards demand

explainable decision-making. Without clear explanations for

how AI models arrive at their conclusions, developers are less

likely to fully trust AI-generated outputs, which can hinder

widespread adoption. To overcome this challenge, researchers

are exploring techniques such as attention visualization, rule

extraction, and the integration of symbolic and neural models

to enhance model transparency and improve trust in AI-

generated results.

5.3 Model Hallucination and Inaccuracies

Generative models, such as Large Language Models (LLMs),

are often prone to hallucination—a phenomenon where the

model generates outputs that are syntactically correct but

semantically incorrect or misleading. In the context of code

generation, this can lead to generated code that fails to

compile, contains security vulnerabilities, or violates coding

standards. This issue of hallucination can also affect bug

prediction, where the model may raise false positives,

diverting developer attention to non-issues and diminishing

the tool's credibility. These inaccuracies can significantly

reduce the reliability of AI-based software engineering tools,

especially in environments that demand high precision and

correctness. To mitigate these risks, robust validation

techniques such as unit testing, static analysis, and manual

reviews are essential. These methods can help ensure that the

generated code meets quality standards and doesn't introduce

errors that could compromise the software’s integrity or

security.

5.4 Integration with Traditional SE Tools and Workflows

Another challenge to the widespread adoption of AI in

software engineering is the difficulty of integrating AI tools

into traditional development workflows. Many AI systems are

designed to operate as standalone tools, lacking plug-and-play

compatibility with existing Integrated Development

Environments (IDEs), Continuous Integration/Continuous

Deployment (CI/CD) pipelines, or version control systems.

Teams working with legacy or custom-built systems may find

it particularly difficult to incorporate modern AI components

into their established workflows, leading to increased

complexity and overhead. Additionally, software

development processes are often dynamic, with codebases

evolving continuously. AI models must be able to adapt in

near real-time to these changes, which presents a challenge in

incremental and continual learning. Seamless integration of

AI into familiar tools is critical for ensuring that developers

can use AI systems without significant disruption to their

usual processes. Achieving this integration will be crucial for

facilitating widespread adoption of AI in software

engineering.

5.5 Ethical and Legal Concerns

The growing use of AI in software engineering raises

significant ethical and legal concerns, particularly regarding

copyright and intellectual property. For example, AI models

trained on free available repositories may unintentionally

reproduce copyrighted code, violating licensing agreements

and creating potential legal liabilities. Another concern is

attribution—AI-generated code may not properly credit the

original authors, leading to ambiguity around authorship and

intellectual property rights. Additionally, AI models may

encode historical biases found in training data, which can

result in unfair or discriminatory outcomes. This could affect

areas such as code review comments or even hiring

recommendations, where biased models may perpetuate

stereotypes or exclude underrepresented groups. To address

these concerns, it is important to improve transparency in the

datasets used to train AI models, ensure stricter compliance

with licensing agreements, and develop ethical standards for

the responsible use of AI in software engineering. This would

help mitigate risks associated with bias, copyright

infringement, and attribution, ensuring that AI's integration

into SE is both legally sound and ethically responsible[22].

6. Results and Discussions

6.1 Summary of Leading Tools and Research Projects

A wide variety of AI-powered tools and research projects

have been developed to support software engineering tasks.

In the area of code generation, tools like GitHub Copilot,

Amazon Code Whisperer, and Code Llama leverage large

language models to generate code from natural language

prompts. For bug prediction and localization, models such as

BugLocator, DeepLoc, and various ML-based classifiers have

shown strong potential in identifying vulnerable modules.

Test case generation has benefited from tools like Diffblue

Cover and EvoSuite, which employ symbolic AI and

evolutionary algorithms, respectively, to automate the

creation of unit tests. Academic models like CodeBERT,

GraphCodeBERT, and PLBART support a range of SE tasks,

including code summarization, clone detection, and code

translation. Each of these tools serves a specific niche in the

SE lifecycle, reflecting the increasing specialization within

the AI-for-SE community.

6.2 Metrics Used for Evaluation

Evaluation of AI tools in software engineering depends

heavily on the targeted task and the context in which the tool

is deployed. Common metrics include accuracy, precision,

recall, and F1-score for classification-based models,

especially in bug prediction and static analysis. In code

generation, performance is often assessed using BLEU

scores, edit distance, or developer satisfaction surveys that

rate code readability and correctness. For search and

recommendation systems, metrics like Mean Reciprocal Rank

(MRR), NDCG, and top-k accuracy are widely used. Test

case generation tools are evaluated based on code coverage

(e.g., statement, branch, or mutation coverage) and fault

detection rate. However, a challenge in this domain is the lack

of standardized benchmarks and datasets, which makes fair

comparison across tools and studies difficult.

6.3 Performance and Limitations

While the reported performance of AI-based tools in software

engineering is promising, many limitations remain. Most

tools show high accuracy on curated or open-source datasets

but struggle when applied to proprietary, complex, or

domain-specific codebases. Generalization remains a key

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 101

concern, especially for large language models trained on

public data. Moreover, several tools depend on high-quality

labeled datasets, which are often unavailable in industrial

settings. In terms of usability, integration with traditional

development environments (e.g., IDEs, CI/CD pipelines) is

still in its early stages, reducing their immediate impact in

production workflows. Hallucination in code generation, poor

explainability in defect prediction, and high computational

demands in training or inference are also notable challenges.

Despite these issues, AI tools continue to mature, and their

practical value increases as more reliable models, APIs, and

datasets become available.

7. Open Research Problems

Despite the significant progress made in integrating AI into

software engineering, several research challenges remain.

These open problems highlight areas that require further

exploration to unlock the full potential of AI tools in real-

world development environments.

7.1 Ensuring Reliability in AI-Generated Code

A pressing challenge is ensuring the steadfastness of AI-

generated code. While tools like GitHub Copilot and Amazon

CodeWhisperer are capable of producing syntactically correct

code, ensuring that this code is functionally correct, secure,

and optimized remains a complex task. AI-generated code

often lacks the robustness of manually written code,

potentially introducing subtle bugs or security vulnerabilities.

Developing methods for automated verification, formal

methods, and dynamic analysis to validate AI-generated code

is critical. Furthermore, integrating unit tests and static

analysis within the code generation process can help catch

errors earlier and improve reliability.

7.2 Real-Time Collaboration Between AI and Developers

AI-powered tools that assist in code generation, debugging, or

testing must evolve to enable real-time collaboration between

AI systems and developers. Currently, most AI tools function

in a reactive mode, where they provide suggestions after code

has been written or errors have been encountered. However,

to achieve true collaborative intelligence, AI tools need to

operate proactively within the development flow. For

instance, tools that offer context-aware suggestions or real-

time error detection during code composition can

significantly improve developer productivity. Research into

developing more interactive and responsive AI systems that

can engage developers in a collaborative, seamless manner is

an important area of focus.

7.3 Continuous Learning from Evolving Codebases

Software systems evolve continuously, with new features,

bug fixes, and refactoring constantly changing the underlying

codebase. AI models trained on static datasets often fail to

keep up with these ongoing changes. One open research

problem is the development of continuous learning

frameworks that allow AI systems to adapt to changes in

evolving codebases without requiring retraining from scratch.

Such systems would need to efficiently process new code

while preserving learned knowledge and avoiding

catastrophic forgetting. Additionally, online learning and

incremental training methods must be explored to make AI

systems more adaptable and scalable in real-world software

engineering environments.

7.4 Cross-Project Generalizability

AI models trained on specific projects or programming

languages often struggle to generalize across different

codebases, programming paradigms, or software domains.

This lack of generalizability is a significant barrier to the

widespread adoption of AI in software engineering. For

example, a model trained to detect defects in a Java project

may not perform well on a Python or C++ codebase.

Addressing this problem requires the development of more

robust, cross-project AI models that can transfer knowledge

across different contexts and programming languages.

Transfer learning methods. domain adaptation, and multi-task

learning are promising approaches to achieve better cross-

project performance[23].

These open research problems represent exciting

opportunities for the AI community to refine existing tools

and develop new methodologies that will enable AI to play a

more integrated and impactful role in software engineering.

Continued collaboration between academia, industry, and

open-source communities will be essential to addressing these

challenges and achieving the vision of fully autonomous

software development.

8. Conclusion and Future Directions

The integration of AI into software engineering has made

remarkable strides, offering new tools and methodologies that

can automate routine tasks, improve code quality, and assist

developers in various stages of the software development

lifecycle. From code generation and bug prediction to test

case automation and software maintenance, AI-driven

approaches are enhancing productivity and enabling more

efficient workflows. However, as the field continues to

evolve, several challenges remain, including ensuring the

reliability of AI-generated code, addressing ethical concerns,

and improving the generalizability of AI models across

diverse codebases. This review has explored the current

landscape of AI applications in software engineering,

highlighting the strengths, limitations, and emerging research

directions. As AI models become more sophisticated, their

role in software engineering is expected to expand further,

with a focus on human-in-the-loop systems, hybrid symbolic-

neural approaches, and the development of regulatory

frameworks. These advancements will help to address current

limitations, improve the collaboration between AI systems

and developers, and ensure the ethical and legal use of AI in

software development. The future of AI in software

engineering holds exciting possibilities, and as the technology

matures, it will be crucial to balance technical innovation

with responsible practices. Through continued research,

collaboration, and thoughtful regulation, AI can transform the

way software is developed, tested, and maintained, offering

new levels of automation, efficiency, and reliability.

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 102

AI continues to reshape the landscape of software

engineering, several promising research directions are

emerging. These future advancements focus on enhancing the

interaction between AI and developers, improving the

robustness of AI systems, and addressing the ethical and

regulatory concerns that arise with AI adoption in software

engineering.AI in software engineering is the development of

human-in-the-loop (HITL) AI systems. HITL systems involve

a continuous interaction between AI and human experts,

where AI assists in automating repetitive tasks while the

human developer provides oversight and corrective feedback.

This approach allows for the combination of human expertise

with AI's computational power, leading to more efficient

workflows and improved decision-making. For instance,

HITL systems could enable real-time bug detection, code

generation, or testing while allowing developers to intervene

and make final decisions based on context or judgment. The

integration of human feedback in training AI models could

also lead to more context-aware systems that understand

developer preferences and project-specific constraints.

Another promising direction is the development of hybrid AI

systems that combine symbolic reasoning with neural

networks. While neural networks excel at learning patterns

from large datasets, symbolic reasoning allows for logic-

based problem-solving, offering transparency, explainability,

and consistency. Combining these two approaches could lead

to AI systems that not only generate code or predict bugs but

also reason about the semantics of the code and provide

explainable and verifiable solutions. For example, a hybrid

system could automatically generate code while ensuring it

adheres to predefined specifications and constraints. This

combination could be particularly valuable in safety-critical

applications where both accuracy and interpretability are

paramount.

AI continues to gain prominence in software engineering, the

need for regulatory and governance frameworks becomes

increasingly important. These frameworks would provide

guidelines on how AI systems should be used, ensuring they

adhere to ethical standards, legal requirements, and privacy

concerns. For example, AI tools in software engineering

could be subjected to guidelines on intellectual property

rights, data privacy, and bias mitigation to prevent unintended

legal or ethical consequences. Establishing clear regulations

for the use of AI, particularly in areas such as code

generation, bug prediction, and software maintenance, would

help to build trust among developers and stakeholders.

Furthermore, regulatory frameworks could address issues

related to accountability, ensuring that developers and

organizations remain responsible for AI-generated outcomes.

These future directions indicate a shift towards collaborative

AI systems, where human expertise and machine intelligence

work in harmony, and towards more transparent, ethical, and

regulated AI applications. As AI continues to evolve,

addressing these challenges will ensure that AI-driven tools in

software engineering are not only effective but also ethical,

safe, and widely adopted.

Conflict of Interest

This review study has not been considered for publishing

anywhere and not been disseminated. There is no conflict of

interest.

Funding Source

No external funding has been availed for this study.

Author Contributions

The authors of this review paper have equally contributed for

the study and further structuring with verification of the

content.

Acknowledgments

We sincerely thank our management, department of IT and

Cognitive Systems and the faculty team for their support in

successful completion of this study.

References

[1] A. Huzzat, A. Anpalagan, A. S. Khwaja, I. Woungang, A. A.

Alnoman, and A. S. Pillai, “A comprehensive review of Digital

Twin technologies in smart cities,” Digit. Eng., vol. 4, p. 100040,

2025, doi: https://doi.org/10.1016/j.dte.2025.100040.

[2] S. Hosseini and H. Seilani, “The role of agentic AI in shaping a

smart future: A systematic review,” Array, vol. 26, p. 100399,

2025, doi: https://doi.org/10.1016/j.array.2025.100399.

[3] D. Ryu and J. Baik, “Effective multi-objective naïve Bayes

learning for cross-project defect prediction,” Appl. Soft Comput.,

vol. 49, pp. 1062–1077, 2016, doi:

https://doi.org/10.1016/j.asoc.2016.04.009.

[4] G. Naeem, M. Asif, and M. Khalid, “Industry 4.0 digital

technologies for the advancement of renewable energy: Functions,

applications, potential and challenges,” Energy Convers. Manag. X,

vol. 24, p. 100779, 2024, doi:

https://doi.org/10.1016/j.ecmx.2024.100779.

[5] M. W. D. Mustafa, K. S. A. Alam, and D. S. D. S. Zawoad, “A

Survey on Data Collection and Labeling in Software Engineering,”

Softw. Eng. An Int. J., vol. 12, no. 3, pp. 121–134, 2019.

[6] R. N. Chenthamarakshan, V. N. P. Chidambaram, and R. S. S. R.

Murthy, “Explainable AI for Software Engineering: A Systematic

Review,” IEEE Access, vol. 8, pp. 84267–84282, 2020.

[7] A. K. Smith, P. R. Thiel, and S. L. Davis, “Challenges of Model

Hallucination in Code Generation and Bug Prediction BT -

Proceedings of the 2021 ACM/IEEE International Conference on

Software Engineering (ICSE),” 2021, pp. 104–112. doi:

10.1109/ICSE43902.2021.00024.

[8] J. R. Parsons, P. M. Rhodes, and T. A. Johnson, “Challenges in

Integrating AI Systems with Traditional Software Engineering

Tools,” Softw. Syst. Model., vol. 20, no. 2, pp. 509–523, 2021, doi:

10.1007/s10270-020-00854-3.

[9] M. L. P. Sherman and T. K. Moore, “Legal and Ethical

Implications of AI in Software Engineering,” J. Leg. Asp. Inf.

Technol., vol. 11, no. 4, pp. 274–286, 2020.

[10] L. Zhang, Y. H. Choi, and D. D. Lin, “Automating Bug Prediction

with Data Labeling: A Case Study BT - Proceedings of the 2021

International Conference on Software Engineering (ICSE),” 2021,

pp. 1120–1131. doi: 10.1109/ICSE43902.2021.00028.

[11] D. H. Liu, W. S. Yang, and F. M. Leong, “Explaining AI Decisions

in Software Engineering: Techniques and Challenges,” ACM

Trans. Softw. Eng. Methodol., vol. 29, no. 1, pp. 21–45, 2020, doi:

10.1145/3364699.

[12] K. S. Arif, S. P. Davis, and C. M. Tang, “Transfer Learning for

Code Quality Prediction: A Comprehensive Survey,” Empir. Softw.

Eng., vol. 26, no. 5, pp. 987–1008, 2021, doi: 10.1007/s10664-021-

09940-w.

[13] F. J. Zhang, H. S. Khan, and M. D. Ali, “Reinforcement Learning

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 103

in Automated Software Testing: An Overview,” IEEE Trans.

Softw. Eng., vol. 47, no. 3, pp. 543–557, 2021, doi:

10.1109/TSE.2020.3018589.

[14] S. K. Gupta, H. M. Lee, and P. H. Singh, “Ethical Considerations

of AI in Code Generation,” J. Softw. Ethics, vol. 18, no. 2, pp. 45–

56, 2020.

[15] Y. Wu, Z. Huang, J. Zhang, and X. Zhang, “Grouting defect

detection of bridge tendon ducts using impact echo and deep

learning via a two-stage strategy,” Mech. Syst. Signal Process., vol.

235, p. 112955, 2025, doi:

https://doi.org/10.1016/j.ymssp.2025.112955.

[16] M. Nevendra and P. Singh, “TRGNet: a deep transfer learning

approach for software defect prediction,” Expert Syst. Appl., vol.

282, p. 127799, 2025, doi:

https://doi.org/10.1016/j.eswa.2025.127799.

[17] N. Limsettho, K. E. Bennin, J. W. Keung, H. Hata, and K.

Matsumoto, “Cross project defect prediction using class

distribution estimation and oversampling,” Inf. Softw. Technol.,

vol. 100, pp. 87–102, 2018, doi:

https://doi.org/10.1016/j.infsof.2018.04.001.

[18] L. He, R. Chen, J. Hu, Z. Huang, L. Zhou, and H. Zhang,

“Research on safety risk assessment model of construction

engineering based on attention mechanism and graph neural

network,” Syst. Soft Comput., vol. 7, p. 200271, 2025, doi:

https://doi.org/10.1016/j.sasc.2025.200271.

[19] A. John, R. Alhajj, and J. Rokne, “A systematic review of AI as a

digital twin for prostate cancer care,” Comput. Methods Programs

Biomed., vol. 268, p. 108804, 2025, doi:

https://doi.org/10.1016/j.cmpb.2025.108804.

[20] X. Ju, Y. Cao, X. Chen, L. Gong, V. Chakma, and X. Zhou, “JIT-

CF: Integrating contrastive learning with feature fusion for

enhanced just-in-time defect prediction,” Inf. Softw. Technol., vol.

182, p. 107706, 2025, doi:

https://doi.org/10.1016/j.infsof.2025.107706.

[21] Y. Elomari et al., “A hybrid data-driven Co-simulation approach

for enhanced integrations of renewables and thermal storage in

building district energy systems,” J. Build. Eng., vol. 104, p.

112405, 2025, doi: https://doi.org/10.1016/j.jobe.2025.112405.

[22] K. I. Gandhi and N. S. Prathyusha, “Chapter 17 - Harnessing digital

twins and AI integration for enhanced disease prediction in the

evolution of healthcare,” in Information Technologies in

Healthcare Industry, P. O. De Pablos, M. N. Almunawar, and M.

B. T.-D. H. Anshari Digital Transformation and Citizen

Empowerment in Asia-Pacific and Europe for a Healthier Society,

Eds., Academic Press, 2025, pp. 361–387. doi:

https://doi.org/10.1016/B978-0-443-30168-1.00004-9.

[23] S. Kanwar, L. K. Awasthi, and V. Shrivastava, “Candidate project

selection in cross project defect prediction using hybrid method,”

Expert Syst. Appl., vol. 218, p. 119625, 2023, doi:

https://doi.org/10.1016/j.eswa.2023.119625.

AUTHORS PROFILE

Medhunhashini D R is currently

serving as an Assistant Professor in the

Department of IT & Cognitive Systems

at Sri Krishna Arts and Science

College. She holds M.Sc., M.Phil., and

MCA degrees and is presently pursuing

her Ph.D. She is a distinguished

academic, having secured the 8th rank

in M.Sc. Software Systems (5-Year

Integrated Course) from Bharathiar University. Her

credentials include being a Red Hat Certified RHCSA Trainer

and a Certified Scrum Master Practitioner under Scrum

Alliance. With a decade of experience, she has actively

engaged in academic enrichment, having participated in

around 47 Faculty Development Programmes, workshops,

and training sessions. Dr. Medhun Hashini has presented and

participated in over 20 national and international conferences

and has published 8 research papers in reputed Scopus and

Web of Science journals. She is also the author of two books.

Dr. K. S. Jeen Marseline, MCA,

M.Phil., Ph.D., is a highly esteemed

educator with 28 years of devoted

experience in the Computer Science

field. Throughout her academic journey,

she has held numerous leadership

positions, making significant

contributions to the development of the

institutions she has been a part of. She has presented over 20

research papers at both national and international

conferences, resulting in 45 published research articles in

SCOPUS, WoS, and peer-reviewed journals.Additionally, she

has authored 7 books and contributed to 12 book chapters.

She has also secured funding from the ICSSR and provided

consultancy amounting to around 10 lakhs.Currently, she is

the Dean of Computer Science and Mathematics at Sri

Krishna Arts and Science College. In 2014, she served as the

Controller of Examinations at the same college, before taking

on the same position at Sri Krishna College of Engineering

and Technology from 2015 to 2017.

Ms. U. Ramya, M.C.A., NET, is a

Research Scholar (Part-time) at Nehru

Arts and Science College, specializing

in Data Mining. She currently serves as

an Assistant Professor in the

Department of IT & CG at Sri Krishna

Arts and Science College, bringing 7.5

years of teaching experience to her role.

Ms. Ramya has earned various online certifications, including

Coursera courses and the RedHat Linux Certified

Administrator credential. She has actively contributed to

academic research, presenting papers at both national and

international conferences. Additionally, she has recently

authored a book titled "Integrated AI and IoT with Self-

Healing Materials for Smart Repairs."

