
© 2025, IJSRCSE All Rights Reserved                                                                                                                                           30 

 

International Journal of Scientific Research in  

Computer Science and Engineering 
Vol.13, Issue.3, pp.30-39, June 2025  

E-ISSN: 2320-7639 

Available online at: www.isroset.org                          
 

Research Article  

QAG-TCP Tool for Effective Test Prioritization of Object-Oriented 

Programs: Design and Implementation 

Hassan Abubakar
1*

, Fatima Zambuk
2

  
 
1Dept. of Computer Science, Faculty of Physical and Computing Sciences, Usmanu Danfodio University, Sokoto, Nigeria 
2Faculty of Science, Department of Mathematical Science, Abubakar Tafawa Balewa University, Bauchi, Nigeria 

 

*Corresponding Author: ✉  

 

Received: 24/Apr/2025; Accepted: 26/May/2025; Published: 30/Jun/2025. | DOI: https://doi.org/10.26438/ijsrcse.v13i3.702  

 

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International 
License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.    

 
Abstract— Regression testing, a crucial software development phase, can be time-consuming due to the need to re-execute all 

test cases after code changes. It has been established that Complexity measurement is an essential component for ensuring 

Software Quality is maintained which in turn determines the success of fault defection in Object- Oriented Program Codes. Lack 

of complexity measurement mechanism makes some of the existing object-oriented based test case prioritization techniques 

often not effectively identifying faults early in the testing process. This inefficiency leads to increased testing costs, decrease in 

Percentage of fault detection, Overall Test Effort in detecting faults, and Average percentage of fault detection rate per cost. In 

this paper we present an improved technique that handles complexity measurement by incorporating Software Quality measures, 

the technique will also consider vary fault severity/cost using real faults for Object Oriented programs. This will significantly 

improve the overall effectiveness in fault detection which will enable developers to identify faults more accurately and 

efficiently in Object-Oriented Program. The proposed technique is implemented as an automated tool that integrates with 

existing testing frameworks. Some early results indicates significant improvement 

 

Keywords— Regression testing, Quality-aware, cost cognizant, prioritization, test cases, software quality 

 
 
Graphical Abstract 

 
 

1. Introduction 
 

The software development lifecycle (SDLC) is a structured 

process for creating high-quality software applications. It 

involves several phases, each with its own set of activities 

designed to ensure the software meets its intended purpose 

and functions as expected [1]. Testing plays a vital role 

throughout the SDLC, acting as a safeguard to identify and 

rectify errors before the software is deployed to real-world 

users. 

 

One crucial testing category is functional testing, which 

focuses on verifying if the software behaves according to its 

documented requirements and specifications[2]. This involves 

designing test cases that simulate real-world usage scenarios 

and ensure the software delivers the intended functionality. 

Testers meticulously examine core features, data processing, 

user interactions, and error handling mechanisms to identify 

any deviations from the expected behavior. A functional 

testing form the foundation for ensuring the software operates 

as designed and caters to user needs. 

 

As software development progresses, changes and 

enhancements are inevitably introduced. Regression testing 

becomes paramount at this stage[3], [4]. It involves re-

running a subset of previously designed functional tests to 

ensure that new changes haven't unintentionally introduced 

http://www.isroset.org/
mailto:hassan.abubakar@udusok.edu.ng
https://doi.org/10.26438/ijsrcse.v13i3.702
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0002-1107-7030
https://orcid.org/0000-0003-2485-9138


 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           31 

regressions, or bugs, into existing functionalities. Regression 

testing safeguards the overall quality and stability of the 

software by verifying that modifications haven't caused 

unintended consequences. 

 

However, with a vast number of functional tests at their 

disposal, testers often face a critical decision: which tests to 

run first during regression testing, especially when time and 

resources are limited. This is where the concept of test case 

prioritization comes into play[5]. It's a strategic approach that 

involves ranking test cases based on specific criteria, aiming 

to maximize the testing process's effectiveness and efficiency. 

Test case prioritization techniques consider various factors 

when assigning priorities. Some techniques focus on the 

likelihood of a test case uncovering a bug (fault detection 

rate). Others might prioritize tests that cover critical 

functionalities or those that are more cost-effective to run 

(considering execution time or resource requirements). By 

strategically prioritizing test cases, testers can focus their 

efforts on high-risk areas first, increasing the probability of 

catching regressions early on in the development cycle. 

 

The benefits of effective test case prioritization are numerous. 

Maximize fault detection, optimize resource allocation, 

reduce testing time and improve software quality. Test case 

prioritization empowers testers to strategically select which 

functional test cases to run first during regression testing, 

maximizing fault detection, optimizing resource allocation, 

and ultimately leading to the development of high-quality 

software.  

 

In as much as the importance and strategies of the existing 

test case prioritization is recognized, significant gaps still 

exist especially in Object-Oriented Programs paradigm 

(OOP) within the dynamics landscape of the Fourth Industrial 

Revolution. Many current techniques lack mechanism for 

incorporating software complexity measures, an essential 

component for maintaining software quality in OOP. 

Furthermore, several techniques are not explicitly designed 

for OOP paradigms[4],frequently depends on artificial faults 

simulation instead of real-world fault data [6] and often 

consider fault severity and detection cost uniform  [7],[8]. 

These collective limitations affect the overalls optimal 

performance of the existing techniques in terms of percentage 

of fault detection, test effort efficiency and average 

percentage of fault detection per cost (APFDc). These 

translate to less effective prioritization, higher testing costs, 

and prolonged debugging cycle for complex OOP 

applications. 

 

Driven by these identified limitations, this research aims to 

develop a robust test case prioritization technique that 

addresses the aforementioned limitations. To be precise, the 

main objective of this research is to develop a new technique 

that effectively handles complexity measurement by 

incorporating Software Quality measures, accurately accounts 

for varying fault severity and cost using real fault data, and is 

specifically meant for Object-Oriented Programs. By 

achieving this, this research seeks to brings significant 

improvement overall effectiveness in fault detection, thereby 

enables developers to trace faults more accurately and 

efficiently in diverse OOP environment 

 

1.1 Objective of the Study 

In order to greatly improve the efficacy and efficiency of 

regression testing for object-oriented applications, the main 

goal of this research is to create and empirically validate the 

Quality-aware GA-based cost-cognizant test case 

prioritization (QAG-TCP) technique. In particular, this study 

aims to demonstrate QAG-TCP's ability to detect faults 

earlier and more thoroughly, tackling the crucial problem of 

preserving software quality and dependability in the face of 

constant changes occurring during software development 

cycles. 

 

1.2 Organization 

This article is organized into the following sections: Section 1 

introduces the background of test case prioritization, the 

problem addressed, and the study's objectives. Section 2 

contains a review of related work on test case prioritization 

and relevant software quality metrics. Section 3 elaborates on 

the theoretical foundations and key calculations, including the 

criticality, quality index, and QFitness functions. Section 4 

details the architecture and essential steps involved in the 

QAG-TCP tool's design and operational requirements. 

Section 5 explains the detailed QAG-TCP methodology and 

implementation, outlining its core algorithms. Section 6 

describes the empirical results, discussion of QAG-TCP's 

performance, and an illustrative example of its application. 

Section 7 provides recommendations and practical insights 

derived from the study's findings. Finally, Section 8 

concludes the research work and outlines future directions for 

enhancement and application. 

 

2. Related Work  
 

Test case prioritization (TCP) is fundamental to effective 

regression testing and software reliability. Recent academic 

efforts have introduced innovative strategies, blending 

artificial intelligence, advanced code analysis, and 

evolutionary algorithms, all aimed at boosting the efficiency 

and effectiveness of fault detection in complex software. A 

systematic literature review by [9] offers a comprehensive 

overview of TCP methods, classifying existing 

methodologies by their principles, objectives, and evaluation 

metrics. Their work confirms TCP's status as a highly 

relevant and current topic, drawing significant interest from 

the software engineering community. 

 

Manikkannan and Babu [10] introduce a novel TCP technique 

that ingeniously employs an embedded autoencoder model. 

This AI-driven strategy focuses intently on learning highly 

effective, condensed representations of test cases, a process 

that in turn critically facilitates their optimal prioritization. 

The overarching aim here is a substantial enhancement in 

regression testing efficiency, leading directly to markedly 

higher fault detection rates. In a parallel vein, Zhu and Liu 

[11] present a TCP algorithm specifically conceived around 

the principle of improved code coverage. Their methodology 

strategically prioritizes test cases by maximizing the coverage 



 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           32 

achieved over newly implemented or modified code 

segments, with empirical evaluations consistently 

demonstrating its strong capability to both boost fault 

detection and streamline the entire regression testing process. 

Beyond the realms of AI-driven representation learning and 

direct code coverage, other significant contributions tackle 

distinct facets of TCP. Ahmed et al. [12] put forth a value-

based cost-cognizant TCP approach, which meticulously 

accounts for both the severity of identified faults and the 

associated cost of executing individual test cases throughout 

the prioritization process. This holistic consideration is shown 

to lead to demonstrably improved regression testing 

effectiveness. In the fascinating field of metaheuristics, 

Raamesh et al. [13] developed HBR2O, a novel hybrid 

algorithm that artfully combines elements from both the 

Battle Royale Optimization and Remora Optimization 

algorithms. HBR2O offers an exceptionally efficient and 

highly effective pathway for test case selection and 

prioritization, having consistently showcased superior 

performance when benchmarked against existing state-of-the-

art algorithms. Its strength lies in its ability to pinpoint high-

quality test cases while simultaneously optimizing resource 

consumption, particularly in terms of processing time and 

memory. 

 

The unique and often intricate challenges presented by object-

oriented software, where complex interdependencies can 

significantly complicate the precise re-execution of test cases, 

have also spurred the development of highly specialized TCP 

solutions. Yadav and Dutta [14], for example, propose a 

technique grounded in the utilization of a dependency graph. 

This visual representation meticulously charts the 

interconnections between various software components, 

enabling a notably cost-effective strategy for prioritizing 

regression tests within object-oriented systems. Their mutGA 

technique, which strategically incorporates mutation 

operations on test cases, notably achieved superior APFD 

(Average Percentage of Faults Detected) values when 

rigorously benchmarked against more traditional methods like 

retest-all. Similarly, Bello et al. [15] contributed the ECRTP 

technique, an evolutionary TCP specifically designed for 

object-oriented programs that profoundly leverages fault 

dependencies. By carefully assigning a value to test cases 

based on the severity of their dependent faults, ECRTP aims 

to ensure the earlier detection of critical issues during 

regression testing. Experimental results from their studies 

robustly validate ECRTP's improved performance in terms of 

both test effort efficiency and overall fault detection 

effectiveness. Importantly, the authors also thoughtfully 

outline future research avenues for ECRTP, including the 

integration of the very latest regression testing information 

and the consideration of additional object-oriented metrics 

like coupling and cohesion, all intended to further enhance its 

capability in ensuring truly robust software quality. 

 

In pursuit of more efficient and effective testing paradigms 

especially on Object-Oriented Softwares, this research titled 

"Quality-Aware Genetic Algorithm Based Cost Cognizant 

Test Case Prioritization for Object-Oriented Programs" offers 

a particularly compelling synthesis of multiple critical 

aspects. By ingeniously integrating genetic algorithms for 

sophisticated optimization, maintaining a clear and practical 

focus on cost-cognizance, specifically tailoring its 

prioritization capabilities for the inherent complexities of 

object-oriented programs, and consistently maintaining a 

quality-aware perspective throughout the entire process, this 

type of approach directly confronts the multifaceted and often 

intricate challenges that define modern software testing. It 

aims not only to address existing limitations but also to 

deliver highly effective and exceptionally efficient test 

solutions that contribute significantly to the overall reliability 

and enduring robustness of contemporary software systems. 

 

3. Theory or Calculation 

 

This section delineates the fundamental mathematical 

formulations and theoretical constructs underpinning the 

Quality-aware GA-based cost-cognizant test case 

prioritization (QAG-TCP) technique. It elaborates on the 

critical metrics and the fitness function that drive the 

prioritization process, integrating concepts of code quality, 

test case importance, and execution cost. 

I. Test Case Criticality 

Test case criticality quantifies the significance of a test case 

in detecting faults, considering the statements it covers and 

their associated execution cost. It is a foundational element in 

assessing a test case's value. The criticality for a given test 

case is formulated as: 

 

𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝒊𝒕𝒚 =
∑(𝑪𝒓𝒊𝒕𝒊𝒄𝒂𝒍𝒊𝒕𝒚_𝒊)

𝑪𝒐𝒔𝒕
 

where: 

Criticality is the overall criticality of the test case 

Criticality_i is the criticality of statement i in the test 

case 

Cost is the cost of running the test case 

II. Quality Index (QI) 

The Quality Index (QI) provides a quantitative measure of the 

inherent structural quality of the program's code, particularly 

focusing on object-oriented design principles. This index 

integrates established object-oriented metrics to provide a 

composite score that guides the prioritization towards more 

fragile or complex code areas. The Quality Index is calculated 

based on Coupling Between Objects (CBO) and Lack of 

Cohesion of Methods (LCOM) metrics, aiming to provide a 

score normalized within a specific range. Two equivalent 

expressions for the Quality Index are employed: 

 

Quality = (CBO < LCOM)+(Math.abs(LCOM - 1)< 0.1) 

   - (CBO > 3 && LCOM > 3) + 1  

Or 

Quality = min(3, max(1, CBO - LCOM + |LCOM - 1|)) 

where: 

(1) 

(2) 

(3) 



 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           33 

CBO is the coupling between objects metric 

LCOM is the lack of cohesion of methods metric 

Quality is the overall quality score 

 

These expressions collectively assess the structural quality, 

with a higher Quality Index indicating a potentially more 

complex or critical code module that warrants earlier testing 

attention. 

III. QFitness Function 

The QFitness function is the core of QAG-TCP's 

prioritization logic, serving as the fitness criterion for the 

Genetic Algorithm. It uniquely combines test case order, fault 

detection capability (test case award value), and the derived 

Quality Index of the program's code to provide a 

comprehensive prioritization score. The QFitness for a 

sequence of test cases (chromosome) is defined as: 

 

𝑄𝑓𝑖𝑡𝑛𝑒𝑠𝑠 =  𝛴 (𝑜𝑟𝑑𝑒𝑟 ∗  𝑡𝑓𝑖)  ∗  𝑄𝑖 

where: 

fitness is the overall fitness value of the chromosome 

(test case sequence) 

order is the position of the test case in the sequence 

(starting from 1) 

tfi is the test case award value for the corresponding 

fault 

Qi is the quality index 

 

By multiplying these three components, the QFitness function 

provides a robust metric that prioritizes test cases that appear 

earlier in the sequence, are more effective at fault detection, 

and target areas of the code base identified as having lower 

quality or higher complexity. This multi-faceted fitness 

evaluation guides the genetic algorithm to evolve test suite 

prioritizations that are both effective in finding faults and 

efficient in their application, considering the inherent quality 

of the software under test. 
 

4. Experimental Method  
 
This section details the design, implementation, and 

experimental setup of the Quality-aware GA-based cost-

cognizant test case prioritization (QAG-TCP) technique. The 

QAG-TCP technique is implemented as an automated tool 

that integrates with existing testing frameworks for Object-

Oriented programs. We used the tool as a means of putting 

the entire process of regression test case prioritization by 

QAG-TCP into practice alongside providing the supporting 

tools which will be used in the next phase of the research 

which is performance experiments. 

 

 

 

Requirements of QAG-TCP Tool  

      The QAG-TCP tool required the following:  

1. The tool should be able to generate coverage 

information for each test case selected. The 

information is used in evaluating the Average 

Percentage of the rate of Fault Detection of the 

prioritization approach.  

2. Users ought to have the capacity to generate and 

save the coverage in an arrangement that can be 

effortlessly recovered for future use, for example, 

.txt design.  

3. Users ought to be able to generate and save test 

cases as Junit test cases/classes.  

4. The tools use the syntactically correct Object-

Oriented program as source files for mutant 

generation and analysis since µJava does not detect 

errors in the source code. The users should be able to 

use syntactically correct OOP source files for mutant 

generation and analysis.  

5. Users should be able to know all the mutants, as the 

mutants are used for the detection of all affected 

statements from the ESDG.  

6. Users should be able to copy the prioritized test 

cases for future use in mutation analysis and 

evaluation of APFDc.  

7. Users should be able to enter the affected statements 

as input to the tool, select the source file, and 

generate the prioritized test cases.  

 

The QAG-TCP Technique's Structure  

The term "software system architecture" describes the high-

level abstraction of a software system, which is made up of 

several significant computing components and connectors 

that explain how these components interact. This research 

project architecture is conceptually divided into three layers: 

the application layer, the database, and the presentation layer 

as utilized by [16] for a similar technique. The QAG-TCP 

technique implements the QFitness, CKJM-IFN, and QAG-

TCP algorithms shown in Figure 2, 3 and 4 to perform the 

regression testing on the supplied source program. 

 

Conceptual Design 

The QAG-TCP tool was planned, developed, and 

implemented using the Java programming language within 

the Eclipse IDE (Version: 2023-06 (4.28.0)). This object-

oriented implementation is designed to receive affected 

statements (derived independently for each 

program/application) and the computed Quality Index of the 

program. Based on these inputs, QAG-TCP executes its core 

prioritization logic to generate an ordered sequence of test 

cases. Figure 1 illustrates the conceptual design, depicting the 

interaction between input components, the core processing 

layer, and the output display. 

 

(3) 



 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           34 

 

Figure 1: Conceptional Design 

 

Input Component  

Syntactically correct source files from the original program 

were used by the tool. The affected statements are accepted as 

input into the tool by an input component in the presentation 

layer. Using each test case's CoverageInfo, the affected 

statements/nodes are used to determine which test cases are 

affected. 

 Output Component 

 Following the information flow, the user views the output in 

the output pane at the presentation layer. The output is shown 

with the test cases prioritized after a certain number of 

reiterations.  

 

 



 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           35 

The QAG-TCP Core  

QAG-TCP technique implements the CKJM-IFN (Algorithm 

1), computeQFitness (Algorithm 2), and QAG-TCP 

(Algorithm 3) at the application layer of the architecture that 

performs regression test case prioritization based on the 

process described by QAG-TCP. These algorithms comprise 

seven major components, which are a Slicing performer, test 

case selector, test case encoder, random population generator, 

fitness evaluator, ordered crossover performer, and swap 

mutation performer as shown in Figure 1. The main 

contribution of this research in regression testing is described 

in detail and how it interacts with other components as well 

as the other tools used to make the QAG-TCP perform 

regression test case prioritization.  

 

Quality Indicator Implementation 

This study adds a new phase to the entire regression testing 

process, which replaces the previous one as the third phase: 

the Quality Indicator phase. This stage was a composite of 

many components working together to perform different 

functions. 

 

When a Java program is run, its original program is passed to 

the Javac command, which separates the program's classes 

into individual class files. Then, by analyzing the bytecode of 

compiled Java files, the CKJM program accesses the class 

files to compute the Object-Oriented metrics. For the 

specified classes, the application computes the six Object-

Oriented metrics (WMC, NOC, CBO, RFC, LCOM, Ca, and 

NPM). After that, a text file called OCKJM.txt is used to 

store the output.  

 

Algorithm I: CKJM-IFN Algorithm 

Source: Adapted from Abubakar et al. (2023, Algorithm I) 

Inputs: 

 javaSourceFiles: A collection of Java source 

files (.java). 

Output: 

 A text file (CK_Metrics_Output.txt) containing 

the calculated CK metrics for each class. 

Procedure: GenerateCKMetrics 

1. Start 
2. Initialize compiledClasses as an empty collection. 

3. Initialize ckMetricsCollection as an empty collection. 

4. Define metricsOutputFile as "CK_Metrics_Output.txt". 

                                   // Compile source code to get class files 

5. For each sourceFile in javaSourceFiles: 

6.  `classFile` ← `CompileJava(`sourceFile`)` 

7.  Add `classFile` to `compiledClasses`. 

                                 // Calculate CK metrics for each compiled class 

8. For each class in compiledClasses: 

9. `metrics` ← `ExecuteCKJMTool(`class`)` 

10. Add `metrics` to `ckMetricsCollection`. 

    // Store the collected metrics 

11. Open metricsOutputFile for writing. 

12. For each metricSet in ckMetricsCollection: 

13. Write `metricSet` to `metricsOutputFile`. 

14. Close metricsOutputFile. 

15. End 

Algorithm 1: CKJM-IFN Algorithm 

Algorithm II: computeQFitness Algorithm 

Source: Adapted from Abubakar et al. (2023, Algorithm II) 

Terminology: 

 Chromosome: A candidate solution, representing an 

entire test suite. 

 Gene: An individual component of a chromosome, 

representing a single test case. 

Inputs: 

 testSuiteChromosome: The test suite to be evaluated. 

 metricsFile: The path to the file containing CK 

metrics (CK_Metrics_Output.txt). 

Output: 

 fitnessScore: A numerical value representing the 

overall quality of the testSuiteChromosome. 

Procedure: CalculateFitnessScore 

1. Start 

              // Load required data 

2. ckMetrics ← Read data from metricsFile. 

3. testCases ← Extract individual genes (test cases) 

from testSuiteChromosome. 

              // Evaluate strength based on fault coverage 

4. Initialize aggregatedStrength to 0. 

5. For each testCase in testCases: 

6.  `coverageData` ← `AnalyzeFaultCoverage(`testCase`)` 

7. `strength` ← `CalculateTestCaseStrength(`coverageData`)` 

8. `aggregatedStrength` ← `aggregatedStrength` + `strength`. 

             // Evaluate software quality from CK metrics 

9. softwareQualityIndex ← DeriveQualityIndex(ckMetrics) 

             // Combine metrics into a final fitness score 

10. fitnessScore ← 
CombineScores(aggregatedStrength,softwareQualityIndex) 

11. Return fitnessScore 

12. End 

  

Algorithm 2:  QFitness Algorithm 

Algorithm III: QAG-TCP Algorithm 

Source: Adapted from Abubakar et al., 2023, Algorithm III 

Inputs: 

 P: The Java source code of the program under 

test. 



 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           36 

 T: The complete, unordered test suite. 

Output: 

 T_prioritized: The test suite T with its test cases 

ordered for optimal fault detection. 

     Procedure: PrioritizeTestSuiteWithGA 

1. Start 
     // Phase 1: Initialization and Test Selection 

2. model ← BuildSystemDependenceGraph(P). 

3. updatedModel ← UpdateModelWithChanges(model). 

4. affectedCode ← 

IdentifyAffectedStatements(updatedModel). 

5. coverageInfo ← MapTestCasesToCoverage(T). 

6. relevantTestSuite ← 

SelectTestsCoveringAffectedCode(T, affectedCode, 

coverageInfo). 

     // Phase 2: Genetic Algorithm Optimization 

7. encodedPopulation ← 

CreateInitialPopulation(relevantTestSuite). 

8. For each chromosome in encodedPopulation: 

9. Calculate its fitness using the 

**`CalculateFitnessScore`** procedure. 

      // Main GA Loop 

10. While termination condition is not met: 

      // Selection 

11. ̀ parent1`, `parent2` ← 

`SelectFittestChromosomes(encodedPopulation)`. 

       // Reproduction 

12. ̀ offspring` ← `ApplyCrossover(parent1, parent2)`. 

13. ̀ mutatedOffspring` ← `ApplyMutation(offspring)`. 

      // Fitness Evaluation and Replacement 

14. Calculate fitness of `mutatedOffspring` using 

**`CalculateFitnessScore`**. 

15. ̀ encodedPopulation` ← 

`UpdatePopulation(encodedPopulation, 

mutatedOffspring)`. 

16. End While 
     // Phase 3: Finalization 

17. bestChromosome ← 

FindBestChromosome(encodedPopulation). 

18. T_prioritized ← 

DecodeChromosomeToTestSuite(bestChromosome). 

19. Return T_prioritized 

20. End 

              Algorithms 3: QAG-TCP Algorithm 

Execution of the QAG-TCP Tool  

The QAG-TCP tool is presented in Figure 2 as the initial user 

interface. A dummy dataset is used to illustrate all the various 

operations that constitute the whole QAG-TCP technique.  

 

 
Figure 2: Main Interface for QAG-TCP Tool 

 

The QAG-TCP main interface contains all the necessary 

commands and text areas needed for the user to work with. 

Each command and its corresponding result display area are 

grouped in a single panel. The first panel includes a 

dropdown menu for selecting a program object. The 

remaining steps for the execution of the QAG-TCP tool are 

described below: 

1. The process of prioritizing test cases commences 

when the user inputs the affected statements by 

clicking the Get Affected Statement Action Button 

in the first panel. The modified model generates the 

affected statements by employing the µJava tool's 

mutants. The affected nodes and statements are 

stored in a text file affectedStatement.txt and later 

accessed in the tool for the remaining operations. 

The affected Statements are equally displayed in a 

Text Area as shown in Figure 2 

2. The next step is to click on the Compute Quality 

Index in the second panel of the main interface of 

the tool, this will involve picking the source code of 

the program, producing the OOP metrics of the 

program, and performing some logical operation to 

produce and index that will have exponential effect 

on the logical procedure that produces the prioritized 

test case. The Quality Index will be stored and 

displayed in the Text Field as shown in Figure 3 

below 

3. The third panel contains a command that generates 

selected test cases when the action button is clicked. 

The text area below the button displays the selected 

test cases along with the affected statements they 

cover. 

4. The fourth panel contains a command to retrieve 

prioritized test cases and a text area displaying their 

fitness score. Figure 3 depicts a screenshot of the 

main interface prototype. 

 



 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           37 

 
Figure 3: Prioritization output Displayed 

 

5. Results and Discussion 
 

Results 
This section presents the empirical results obtained from the 

experimental evaluation of the Quality-aware GA-based cost-

cognizant test case prioritization (QAG-TCP) technique. The 

analysis focuses on QAG-TCP's performance across three key 

metrics: fault detection effectiveness (EFFpa), testing effort 

efficiency (TEEpa), and the cost-cognizant fault detection 

rate (APFDc). A comprehensive comparative analysis of 

QAG-TCP with other existing techniques will be presented in 

a separate, dedicated publication. 

 

Fault Detection Effectiveness (EFFpa): QAG-TCP 

demonstrated high fault detection effectiveness across the 

object-oriented programs used in the evaluation. As 

illustrated by its average effectiveness score of 75.11%, its 

prioritization strategy consistently showed strong capabilities 

in identifying faults. Statistical analysis further confirmed a 

significant performance level in fault detection achieved by 

QAG-TCP. 

 

Testing Effort Efficiency (TEEpa): In terms of testing effort 

efficiency, QAG-TCP exhibited strong performance. While 

its average execution time was 2.34 seconds, the technique 

achieved high efficiency in locating faults relative to the 

effort required, as depicted by its overall efficiency scores 

(Figure 5). Statistical analysis indicated a highly significant 

efficiency level for QAG-TCP, underscoring its optimized 

resource utilization. 

 

APFDc Performance: QAG-TCP generally yielded 

beneficial trends in APFDc scores, with its average APFDc 

performance of 94.36%. This indicates its strength in 

prioritizing test cases in a cost-cognizant manner, aiming to 

detect faults earlier in the testing process while considering 

associated costs. 

 

Illustrative Example: QAG-TCP Prioritization Process 

An illustrative example will be provided in this section 

showing all the computational process in each stage of the 

technique 

Statements in the Program 

The statements in the source code were picked and numbered 

sequentially, the result was used to generate a dynamic 

matrix. The choice of a dynamic matrix is because the 

number of statements is assumed to be dynamic since each 

program has its number of codes and can change during 

updates/modifications. The matrix is shown below 

 

[1, 2, 3, 4, 5, 6] 

[11, 12, 13, 14, 15, 16] 

[21, 22, 23, 24, 25, 26] 

[31, 32, 33, 34, 35, 36] 

[41, 42, 43, 44, 45, 46] 

[51, 52, 53, 54, 55, 56] 

[61, 62, 63, 64, 65, 66] 

[71, 72, 73, 74, 75] 

 

Test Case Selection 

Test cases that execute at least one affected statement are 

chosen by a test case selector based on coverage data and 

affected statements. Next, a numerical integer representing a 

subset of the test cases is encoded and used as the input for 

the prioritizing component. 

 

3 = [10, 8, 12, 11, 9] 

2 = [14, 12, 9, 11, 13, 8, 15, 10] 

4 = [17, 8, 18, 12, 13, 14, 16, 10, 11, 15, 9] 

1 = [8, 9, 10, 11] 

6 = [13, 11, 10, 9, 8, 12, 15, 14] 

5 = [12, 14, 13, 8, 10, 11, 9, 15] 

7 = [13, 11, 10, 9, 8, 12, 15, 14] 

8 = [8, 6, 4, 5, 10, 7, 9, 11] 

Criticality Calculations 

Formula 1 in Section 3 was used to derive the following table 

  
Table 1: Criticality Derivation Table 

TestCase No_of_ 

Statements 

Assigned 

Cost 

TestCase 

Criticality 

1 4 13 4 

2 8 12 14 

3 5 11 7 

4 11 18 20 

5 8 13 13 

6 8 17 12 

7 8 11 16 

  82 

Therefore, the Criticality Sum is  82 



 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           38 

Quality Index Calculation 

Using the formula 2 or alternatively formula 3 in section 3 the 

following was derived  

Table 2: Quality Index 

CBO LCOM Quality Index 

1.0319 2.5021 2 

 

Qfitness Function Calculation 

Tables 1 and 2 will now be used to compute QFitness Value. 

Assuming we take Test Case 3 below. 

As shown above in table 1 , the criticality of test case 3 is 7, 

its order is 3 from Table 3 and tfi is 12 from Table 3.  Using 

the formula 4 in section 3 we calculate the QFitness of each 

Test Case 

𝑇3(𝑄𝑓𝑖𝑡𝑛𝑒𝑠𝑠) =  𝑂𝑟𝑑𝑒𝑟 ∗  𝑡𝑓𝑖 ∗  𝑄𝑖  

𝑇3(𝑄𝑓𝑖𝑡𝑛𝑒𝑠𝑠) =  3 * 7 * 2 

𝑇3(𝑄𝑓𝑖𝑡𝑛𝑒𝑠𝑠) =  42 
 

The above calculation is done for all the test cases and the 

results are shown in the table below 

Table 3: QFitness Results 

TestCase Order TestCase 

Criticality 

Quality 

Index 

Qfitness 

6 1 12      2 24 

5 2 13 2 52 

3 3 7 2 42 

2 4 14 2 112 

7 5 16 2 160 

4 6 20 2 240 

1 7 4 2 56 

    686 

Test Case prioritization 

The higher the QFitness value the higher the priority of the 

test case, hence from the Table 3  the prioritized test cases are 

as shown below 

        Table 4: Final Order(prioritized test cases)  

t4 t7 t2 t1 t5 t3 t6 

4 7 2 1 5 3 6 

 

 Table 4 shows t4, t7, t2, t1, t5, t3, t6 is the order by 

which faults need to be trap efficiently. The process will be 

repeated while performing exchanging parent with a child 

until the QFitness value remain the same before and after 

mutation. That final order is the prioritized test cases. 

 

Discussion 

The empirical evaluation clearly highlights the robust 

performance of the proposed QAG-TCP technique, 

particularly its notable achievements in fault detection 

effectiveness and testing effort efficiency. These strengths are 

directly attributable to QAG-TCP's innovative methodology. 

QAG-TCP's enhanced fault detection is rooted in its data-

driven framework. This framework incorporates real-world 

fault data and leverages object-oriented code quality metrics. 

By precisely targeting potentially problematic code modules 

identified through these metrics, QAG-TCP effectively and 

proactively uncovers faults. This structured approach 

contributes significantly to its high effectiveness. Similarly, 

QAG-TCP's superior testing effort efficiency showcases the 

method's capability to optimize resource utilization. The 

inherent adaptive nature of its genetic algorithm allows it to 

intelligently explore the test case prioritization space, 

maximizing fault revelation while optimizing the effort 

expended. This balance makes QAG-TCP a highly practical 

solution for regression testing. While the APFDc results 

showed positive trends for QAG-TCP, which will later be 

proved through demonstrating its statistical significance to 

fully demonstrate its statistical advantage.  

 

6. Conclusion and Future Scope  
 

QAG-TCP presents a promising approach to object-oriented 

regression testing prioritization. Its incorporation of real-

world fault data, cost considerations, and complexity 

measurement yields a more comprehensive and effective 

prioritization strategy. The empirical evaluation confirmed 

QAG-TCP's significant improvements in fault detection 

effectiveness, achieving an average score of 75.11%. The 

study's findings also consistently demonstrated QAG-TCP's 

high test effort efficiency, with an average execution time of 

2.34 seconds. This highlights its ability to detect faults earlier 

and, overall, detect more faults while optimizing effort. While 

QAG-TCP exhibited beneficial trends in its APFDc scores 

94.36%, the full implications of this aspect will be further 

explored in subsequent work. This approach distinguishes 

itself from traditional techniques by utilizing real-world fault 

data and complexity measurement, establishing a more 

realistic and effective prioritization process. Further research 

will explore its application to diverse software domains and 

investigate additional quality attributes for inclusion in the 

fitness function to enhance its capabilities. 

Author's Statement 
Disclosure: The authors declare that the research presented in 

this paper, titled "Quality-Aware Genetic Algorithm Based 

Cost Cognizant Test Case Prioritization for Object-Oriented 

Programs," was conducted in the absence of any commercial 

or financial relationships that could be construed as a 

potential conflict of interest. The authors declare that no 

specific funding was received for this research from any 

public, commercial, or not-for-profit organizations. This 

research was self-funded by the authors. The authors declare 

no competing interests. All authors have read and agreed to 

the published version of the manuscript. 

 

Acknowledgements 



 Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           39 

The authors extend sincere gratitude to the anonymous 

reviewers whose insightful comments and constructive 

feedback significantly enhanced the quality and clarity of this 

manuscript. Their valuable suggestions were instrumental in 

shaping the final version of this work. Furthermore, the 

authors wishes to express deep appreciation to Professor A.Y 

Gital for their invaluable guidance and unwavering support 

throughout  this  research 

Funding Source 

None. 

Authors' Contribution 

The co-author(Hassan Abubakar) was responsible for the 

conceptualization, methodology, software development, 

validation, formal analysis, investigation, resource 

acquisition, initial draft writing, and visualization of this 

study. All these contributions were carried out under the 

direct guidance and supervision of the senior author who is 

also the second author. 

Conflict of Interest  

All authors declare that they have no financial, commercial, 

legal, or professional relationships with other organizations or 

individuals that could potentially influence the objectivity or 

integrity of this research. No other author has received 

consultancies, employment, or support from advocacy 

groups, fees, honoraria, patents, royalties, or stock/share 

ownership that could be perceived as creating a conflict of 

interest. 

Data Availability 

The Source codes used as input datasets in the current study 

are publicly accessible for in 

https://sir.csc.ncsu.edu/portal/index.php and are expected to 

be maintained permanently within the repository in 

accordance with their archival policies. The custom code 

developed for this study will be made available in the 

https://github.com/HAGummi/QAG_TCP. The repository 

ensures the long-term availability of the code through its 

persistent identifier and archival practices. 

 

References 

  
[1] R. S. Pressman and B. R. Maxim, “Software Engineering: A 

Practitioner’s Approach,” McGraw-{Hill}. {Safe} {Work} 

{Australia}, {EMERGENCY} {PLANS} {FACT} {SHEET}. 

http://bit.ly/1nhk52x {Accesed} on {Jan}, Vol.19, 2017. 

[2] S. Saroja and S. Haseena, “Functional and Non-Functional 

Requirements in Agile Software Development,” Agil. Softw. Dev. 

Trends, Challenges Appl., pp.71–86, 2023. 

[3] F. F. Xia, “GIS Software Product Development Challenges in the 

Era of Cloud Computing,” in New Thinking in GIScience, Springer, 

pp.129–142, 2022. 

[4] H. Abubakar, F. U. Zambuk, U. M. Ahmed, and A. Y. Gital, “A 

Review on the New Trend in Regression Test Case Prioritization,” 

ATBU J. Sci. Technol. Educ., Vol.11, No.1, pp.426–436, 2023. 

[5] M. Heusser and M. Larsen, Software Testing Strategies: A testing 

guide for the 2020s. Packt Publishing Ltd, 2023. 

[6] D. Paterson, “Improvements to Test Case Prioritisation considering 

Efficiency and Effectiveness on Real Faults,” no. March, 2019. 

[7] A. Bello, “EVOLUTIONARY COST-COGNIZANT 

REGRESSION TEST CASE PRIORITIZATION FOR OBJECT-

ORIENTED PROGRAMS,” 2019. 

[8] A. Bello, A. B. Md. Sultan, and S. Shehu, “Multi-Criteria 

Evolutionary Regression Test Prioritization for Dynamic Object-

Oriented Programs,” Int. J. Adv. Electron. Comput. Sci., Vol.6, 

No.1, pp.14–18, 2019. 

[9] I. P. Fernandes and L. E. G. Martins, “Test case prioritization 

methods: A systematic literature review,” J. Softw. Eng. Res. Dev., 

Vol.13, No.2, pp.13–51, 2025. 

[10] D. Manikkannan and S. Babu, “Test Case Prioritization via 

Embedded Autoencoder Model for Software Quality Assurance,” 

IETE J. Res., Vol.70, No.4, pp.3845–3855, 2024. 

[11] Y. Zhu and F. Liu, “Test Case Prioritization Algorithm Based on 

Improved Code Coverage.,” IAENG Int. J. Comput. Sci., Vol.50, 

No.2, 2023. 

[12] F. S. Ahmed, A. Majeed, T. A. Khan, and S. N. Bhatti, “Value-

based cost-cognizant test case prioritization for regression testing,” 

PLoS One, Vol.17, No.5, pp.e0264972, 2022. 

[13] L. Raamesh, S. Radhika, and S. Jothi, “A cost-effective test case 

selection and prioritization using hybrid battle royale-based remora 

optimization,” Neural Comput. Appl., Vol.34, No.24, pp.22435–

22447, 2022. 
[14] S. Yadav, D.K., Dutta, “Regression test case selection and 

prioritization for object oriented software,” Microsyst Technol, 

Vol.26, pp.1463–1477, 2020. 

[15] A. Bello, A. Sultan, A. A. Abdul Ghani, and H. Zulzalil, 

“Evolutionary Cost Cognizant Regression Test Prioritization for 

Object-Oriented Programs Based on Fault Dependency,” Int. J. 

Eng. Technol., Vol.7, No.4.1, pp.28–32, 2018. 

[16] R. M. Parizi, “Automatic randomized test generation technique for 

aspectoriented software (Doctoral dissertation, Universiti Putra 

Malaysia),” 2012. 

 

 

AUTHORS PROFILE 

Dr. Hassan Abubakar received his PhD 

in Computer Science from Abubakar 

Tafawa Balewa University, Bauchi State, 

Nigeria. He earned his Master's Degree in 

Computing: Information Engineering with 

Network Management from Robert 

Gordon University, Aberdeen, UK. He 

also holds a B.Sc. in Computer Science 

from Usmanu Danfodiyo University, 

Sokoto, Nigeria. He is currently a Lecturer at the Department 

of Computer Science, Usmanu Danfodiyo University, Sokoto, 

Nigeria. His research interests include software engineering, 

programming, web design, and database management. He has 

21 years of teaching experience and 8 years of research 

experience. 

 

Dr. Fatima Umar Zambuk received her 

PhD in Computer Science from Abubakar 

Tafawa Balewa University (ATBU), 

Bauchi State, Nigeria. She is currently a 

lecturer at the Department of Computer 

Science, Abubakar Tafawa Balewa 

University, Bauchi, Nigeria. Her research 

interests include cloud computing, task 

scheduling algorithms, optimization 

techniques, and machine learning, with a particular focus on 

energy efficiency and resource management in virtualized 

environments. 


