
© 2025, IJSRCSE All Rights Reserved 48

International Journal of Scientific Research in

Computer Science and Engineering
Vol.13, Issue.3, pp.48-63, June 2025

E-ISSN: 2320-7639

Available online at: www.isroset.org

Research Article

Fine-Tuning Depth Analysis: Identifying the Sweet Spot for Maximum

Accuracy in CNNs

Adebayo Rotimi Philip
1

1Dept. of Artificial Intelligence/African Centre Excellence on Technology Enhanced Learning (ACETEL), National Open University, Lagos,

Nigeria

*Corresponding Author: ✉

Received: 21/Apr/2025; Accepted: 22/May/2025; Published: 30/Jun/2025. | DOI: https://doi.org/10.26438/ijsrcse.v13i3.703

Copyright © 2025 by author(s). This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 International
License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited & its authors credited.

Abstract— Convolutional Neural Networks (CNN) have transformed the field of computer vision through their exceptional

performance in image classification, face recognition, and object detection. Much of its success is due to the development of

transfer learning, where pre-trained models trained on large datasets such as ImageNet are fine-tuned (adapted) for new tasks,

even when only limited labeled data is available. Fine-tuning involves gradually unfreezing and retraining a pre-trained model to

obtain optimal accuracy. However, determining the optimal number of layers to unfreeze remains a critical challenge.

Unfreezing too few layers may limit the model's ability to adapt to task-specific features, leading to under-fitting, while fine-

tuning too many layers risks over-fitting, thereby compromising generalization on unseen data. This research aims to

systematically determine the number of layers to fine-tune in a pre-trained CNN to achieve optimal performance. Grad-CAM

and experimental approach, which involves fine-tuning ResNet152, EfficientNetB0, and VGG16 networks, are used. Findings

show that unfreezing one-fifth (20% to 25%) of the top layers gives optimal performance and unfreezing too many layers leads

to overfitting. However, the VGG16 network requires unfreezing the entire layers for optimal performance because of its few

layers (18 layers). Future research can consider other pre-trained networks to ascertain the findings of this study. This research is

significant to AI researchers, AI engineers, data analysts, and individuals who build AI systems.

Keywords— Convolutional Neural Network, Fine-tuning, Transfer Learning, pre-train, Grad-CAM, Unfreezing.

Graphical Abstract

1. Introduction

Convolutional Neural Networks (CNNs) have transformed

the field of computer vision through their exceptional

performance in image recognition, semantic segmentation,

object detection, and facial recognition [1]. These

unimaginable achievements are made possible through the

development of transfer learning, where a pre-trained model

trained on a large dataset such as ImageNet, is retrained for

new tasks with limited labeled data. Transfer learning

improves the learning process by leveraging knowledge from

previous tasks to inform the target task, thereby enhancing

efficiency and enabling faster, more cost-effective solutions.

[2]. Furthermore, transfer learning is most applicable when

there is not enough data to build a machine-learning model

[3]. Researchers can leverage pre-trained models and fine-

tune them to suit the constraints of a limited dataset. For

instance, Huynh, Li, and Giger (2016) achieved good

performance in the classification of mammographic tumors

with just 607 digital mammographic images through transfer

learning [4]. Also, Kermany et al (2018) utilized transfer

learning to classify images for macular degeneration and

diabetic retinopathy with limited data [5]. The approach not

only accelerates model development but also enhances

performance, especially in scenarios with constrained

computational resources and data availability [6].

http://www.isroset.org/
mailto:rotphilipadeb@yahoo.com
https://doi.org/10.26438/ijsrcse.v13i3.703
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0009-0007-0452-7810

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 49

Transfer learning typically involves unfreezing certain layers

of a pre-trained model and fine-tuning them on task-specific

data [3]. For instance, the last few layers of an EfficientNetB0

model, a CNN model with 237 layers, can be fine-tuned

(unfreeze) to update its weights in order to get acclimatized

with the training dataset, to achieve better performance.

However, determining the ideal number of layers to fine-tune

remains a critical challenge [7]. Fine-tuning too few layers

may limit the model's ability to adapt to task-specific features,

leading to underfitting, while fine-tuning too many layers

risks overfitting, thereby compromising generalization on

unseen data. Currently, there is no established computational

method to precisely determine or calculate the ideal number

of layers for fine-tuning to achieve optimal performance. This

process often involves iterative experimentation with

different configurations of trainable layers to find the

combination that yields the best results.

This research focuses on systematically determining the

number of layers in a pre-trained CNN architecture that needs

to be fine-tuned to obtain optimal performance. The research

will investigate the impact of varying the number of trainable

layers during fine-tuning of transfer learning models,

specifically leveraging the EfficientNetB0, ResNet152, and

VGG16 architectures. The goal is to identify the

configuration that maximizes both accuracy and validation

accuracy on a benchmark dataset, thereby establishing

guidelines for optimal model adaptation in practical

applications. By integrating computational experiments and

Gradient-weighted Class Activation Mapping (Grad-CAM)

machine learning principles, this research intends to provide

empirical insights into optimizing the number of trainable

layers in transfer learning architectures for enhanced

performance across diverse visual recognition tasks.

1.1. Aims and objectives

This study aims to accomplish the following objective:

1. Assess how the number of trainable layers affects

model performance: conduct empirical experiments

to analyze how varying the number of trainable

layers in transfer learning networks such as

EfficientNetB0, ResNet152, and VGG16

architecture affects both accuracy and validation

accuracy. Besides, the research aims to measure

performance metrics across a benchmark dataset to

quantify the influence of different layer

configurations on model adaptability and

generalization.

2. Establish guidelines for optimal fine-tuning: identify

and document configurations of trainable layers that

consistently yield optimal performance.

3. Derive insights from experimental and Grad-CAM

analysis to define guidelines that inform scientists on

selecting the appropriate number of layers for fine-

tuning to obtain optimal training and validation

accuracies.

2. Related Work

Training transfer learning models involve fine-tuning to

obtain better performance. A critical decision in transfer

learning involves selecting the number of layers to fine-tune

(unfreeze) in the pre-trained model. This decision can

significantly impact training accuracy, validation accuracy,

and computational efficiency. This literature review examines

several studies to determine the optimal number of layers to

unfreeze to obtain the best accuracy. Recent studies consider

fine-tuning under three sub-categories: fine-tuning

approaches, evaluation of multiple pre-trained CNNs, and the

impacts of fine-tuning depth on model performance.

2.1. Fine-Tuning Approaches

The fine-tuning approach has been very effective in

improving the performance of pre-trained models. Several

studies have investigated different approaches to determine

the range of layers to unfreeze to maximize the accuracy of a

pre-trained network. While the experimental approach is the

most common [8], [9], [13], Vrbančič and Podgorelec (2020)

employed the Differential Evolution-based Fine-Tuning

(DEFT) method for determining the range of layers to

unfreeze for identifying osteosarcoma from a medical

imaging dataset [12]. This method was evaluated for

osteosarcoma detection from medical images and compared

with a conventionally trained CNN, a pre-trained model, and

a fine-tuned model with manually selected layers. DEFT

outperformed the other methods by margins ranging from

4.45% to 32.75% in classification accuracy.

Houlsby et al. (2020) introduced transfer learning with

adapter modules, a compact and extensible approach that

adds only a few trainable parameters per task while keeping

the original network fixed [11]. This method enables the

addition of new tasks without retraining previous ones,

enabling extensive parameter sharing. Demonstrating this,

adapter modules were used to transfer the BERT Transformer

model to 26 diverse text classification tasks, including the

GLUE benchmark. The adapters achieved near state-of-the-

art performance within 0.4% of full fine-tuning on GLUE,

while adding only 3.6% parameters per task, compared to

100% for full fine-tuning.

Masyitah et al. (2022) examined the performance of pre-

trained CNN models (VGG-Net, MobileNet, ResNet, and

DenseNet) in classifying visual field (VF) defects [2]. Their

approach involved fine-tuning and hyperparameter tuning

with a batch size of 32, 50 training epochs, and the ADAM

optimizer. Findings show that VGG-16 achieved 97.63%

accuracy. Bayesian optimization was employed for automated

hyperparameter tuning and fine-tuning. DenseNet-121 model

obtained an accuracy of 98.46% validation accuracy and

99.57% test accuracy, respectively.

2.2. Empirical Evaluation of Multiple Pre-trained

Architectures

While the pre-trained model is widely used in medical

imaging classification, their performance varies significantly

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 50

due to the fine-tuning strategy employed and the specific

medical imaging domain, such as X-ray, MRI, Histology,

Dermoscopy, and Endoscopic surgery. A few studies

compared different CNN architectures across varying fine-

tuning settings to identify architecture-specific behavior.

Davila, Colan, and Hasegawa (2024) investigated the

challenges of optimizing fine-tuning methods for pre-trained

models in medical image analysis [29]. Eight fine-tuning

approaches were employed with three pre-trained models:

ResNet-50, DenseNet-121, and VGG-19. They found that the

performance of the fine-tuning approach depends largely on

the CNN architecture and the types of images. DenseNet-121

performed better than the traditional fine-tuning approach.

Kumar, Anuar, and Hassan (2022) investigated the

performance of various pre-trained models (SqueezeNet,

GoogleNet, ShuffleNet, Darknet-53, and Inception-V3)

across different epochs, learning rates, and mini-batch sizes

[10]. Using confusion matrices for evaluation, the

experiments showed that Inception-V3 achieved the highest

accuracy of 96.98%, along with precision of 92.63%,

sensitivity of 92.46%, specificity of 98.12%, and an F1-score

of 92.49%.

2.3. Impact of Fine-Tuning Depth on Model Performance

These studies explicitly examine how the number or depth of

fine-tuned layers affects performance metrics such as

accuracy, overfitting, and generalization. Karlsson and

Runelöv (2021) researched a pre-trained AlexNet architecture

and adopted fine-tuning to train the network to diagnose lung

diseases from chest X-rays [8]. They investigated how deeply

to fine-tune the architecture to achieve the best accuracy,

sensitivity, and specificity. The network was divided into five

blocks, resulting in five different fine-tuning depths.

Although all models produced promising results, they failed

to learn the intended features. Instead, the models resorted to

shortcut learning by identifying the image origin rather than

differences in the lungs. Consequently, the research question

of this thesis remains unresolved.

The study done by Gupta and Gupta (2020) partly resolves

the inconclusive result of Karlsson and Runelöv (2021). They

studied the effects of fine-tuning a pre-trained image

classification model on the accuracy of binary classification

tasks [9]. Retraining the VGG-16 model with 640 medical

images and 65 testing images over 100 epochs, they found

that unfreezing the lower layers initially improved validation

accuracy, followed by a decline.

Kandel and Castelli (2020) conducted experiments on two

histopathology datasets using three state-of-the-art

architectures to study the effect of block-wise fine-tuning of

CNNs [1]. They found that fine-tuning the entire network

does not result in the best validation accuracy, but, leads to

overfitting and requires more computational resources during

training. For shallow networks, in particular, fine-tuning only

the top blocks can save time and computational resources

while producing more robust classifiers.

Ki-Sun Lee et al (2020) investigated the impacts of fine-

tuning different numbers of convolutional blocks in VGG-16

and VGG-19 architectures for COVID-19 detection using

chest X-ray images [13]. They found that fine-tuning up to

three convolutional blocks improves accuracy while fine-

tuning beyond three blocks decreases accuracy. Furthermore,

the study by Amiri, Brooks, and Rivaz (2020) investigated

the effects of fine-tuning different parts of the U-Net

architecture for breast ultrasound image segmentation [14].

Their findings align with those of Ki-Sun Lee et al. (2020)

which revealed fine-tuning the encoder part, while keeping

the decoder part of the U-Net frozen, resulted in better

segmentation performance. Also, including more layers from

shallow to deep during fine-tuning led to improved results.

Taormina et al. (2020) investigated the impact of fine-tuning

various layers of convolutional neural networks (CNNs), with

a focus on AlexNet, for the classification of HEp-2 cell

images [15]. Their study also included a comparative analysis

of four widely used pre-trained models: AlexNet,

SqueezeNet, ResNet18, and GoogLeNet. Using a public

dataset, the models were evaluated based on accuracy and the

area under the Receiver Operating Characteristic (ROC)

curve (AUC). The findings highlighted the advantage of

selective fine-tuning (retaining the early layers for general

feature extraction while adapting the deeper layers to the

specific classification task), demonstrating improved

performance through task-specific layer adjustment.

Adepoju et al (2024) investigated how fine-tuning different

layers of pre-trained models impacts classification

performance, particularly in high-precision tasks such as

medical diagnosis [30]. They used InceptionV3 and Xception

architectures to classify breast cancer from mammographic

images. Systematic fine-tuning approaches were employed to

assess performance across varying layers and findings show

that InceptionV3 achieved slightly better performance (0.65)

than Xception (0.64) without fine-tuning. Accuracy increased

to 0.66 when the last two block layers were fine-tuned and

decreased to 0.61 upon fine-tuning all the layers.

2.4. Gaps in the literature

Despite the numerous studies on exploring the number of

optimal layers to fine-tune in transfer learning, more studies

are necessary to justify the range of layers to unfreeze in a

pre-trained architecture to obtain optimal performance. The

studies asserted that fine-tuning layers requires a balanced

approach to prevent underfitting and overfitting the model.

Many studies adopted various pre-trained models, fine-tuning

strategies, and datasets to answer these research questions.

However, the studies reveal varying findings. For instance,

while some research supports shallow fine-tuning to avoid

overfitting and reduce computational costs, others suggest

that deeper fine-tuning can improve performance depending

on the task. This inconsistency makes it challenging to draw

an approximate conclusion on how deep to fine-tune across

different domains or model architectures.

Even with the inconsistencies, much of the literature supports

unfreezing the top few layers. However, more studies are

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 51

required to support this assertion and to provide an acceptable

guideline on the number of layers to unfreeze to consistently

achieve optimal performance.

Lastly, there is limited research that integrates explainable AI

tools such as Grad-CAM to analyze and interpret the impact

of fine-tuning depth on model decision-making and feature

extraction. While performance metrics such as accuracy and

AUC are frequently used, they do not provide insight into

why a particular fine-tuning configuration performs better.

Few studies combine quantitative results with visual

explanations to guide the selection of trainable layers. This

creates a gap in practical, interpretable methodologies that

can inform scientists not only on what layers to fine-tune but

also on why those layers contribute to improved training and

validation performance.

The table below summarizes the literature review and their corresponding findings
Table 1 summarizes the literature review

Author(s) Problem definition Methodology Findings

Vrbančič &

Podgorelec (2020)

[12]

Determine optimal layers to unfreeze

for medical image classification

(osteosarcoma).

Differential Evolution-

based Fine-Tuning (DEFT);

compared with manual

fine-tuning and

conventional training.

DEFT outperformed others by 4.45%–

32.75% in accuracy.

Houlsby et al. (2020)

[11]

Proposed transfer learning with

adapter modules Reduce resource cost

of transfer learning while maintaining

performance.

Adapter modules added to

BERT; tested on 26 NLP

tasks including GLUE

benchmark.

Achieved 0.4% less than full fine-tuning

with only 3.6% extra parameters vs

100%.

Masyitah et al.

(2022) [2]

Classify visual field defects using pre-

trained CNNs.

Fine-tuned VGG,

MobileNet, ResNet,

DenseNet; hyperparameter

tuning with Bayesian

optimization.

DenseNet-121 achieved 98.46% (val) and

99.57% (test) accuracy.

Davila, Colan &

Hasegawa (2024)

[29]

Compare fine-tuning strategies across

architectures for medical imaging.

Used 8 fine-tuning

strategies on ResNet-50,

DenseNet-121, VGG-19.

DenseNet-121 outperformed other

strategies; performance is architecture-

and image-type-dependent.

Kumar, Anuar &

Hassan (2022) [10]

Evaluate various pre-trained models

across hyperparameter configurations.

Tested SqueezeNet,

GoogleNet, ShuffleNet,

etc., with varied learning

rates, epochs.

Inception-V3 performed best: 96.98%

accuracy, high F1-score and specificity.

Karlsson & Runelöv

(2021) [8]

Determine fine-tuning depth for lung

disease classification.

Fine-tuned AlexNet at 5

different block depths on

chest X-rays.

Models used shortcut learning; failed to

learn medical features.

Gupta & Gupta

(2020) [9]

Examine how fine-tuning depth

affects binary classification.

Fine-tuned VGG-16 using

640 train / 65 test images

over 100 epochs.

Validation accuracy improved then

declined with deeper unfreezing.

Kandel & Castelli

(2020) [1]

Study block-wise fine-tuning on

histopathology datasets.

Used 3 CNNs on 2 datasets;

tested full vs partial fine-

tuning.

Full fine-tuning led to overfitting; tuning

top blocks was more efficient.

Ki-Sun Lee et al.

(2020) [13]

Optimize fine-tuning depth in VGG-

16/19 for COVID-19 detection.

Fine-tuned 1–5 blocks on

chest X-rays.

Accuracy improved up to 3 blocks;

decreased beyond that.

Amiri, Brooks &

Rivaz (2020) [15]

Analyze effect of encoder vs decoder

tuning in U-Net.

Partial fine-tuning on U-

Net for breast ultrasound

segmentation.

Encoder-only tuning improved

segmentation results.

Taormina et al.

(2020) [14]

Understand selective fine-tuning for

HEp-2 cell image classification.

Compared AlexNet,

SqueezeNet, ResNet18,

GoogLeNet; varied fine-

tuning layers.

Selective tuning of deeper layers

improved performance (accuracy, AUC).

Adepoju et al. (2024)

[30]

Investigate impact of layer-specific

fine-tuning in cancer diagnosis.

Used InceptionV3 &

Xception; systematically

fine-tuned layers.

Accuracy rose from 0.65 to 0.66 (last 2

blocks), fell to 0.61 (full fine-tuning).

3. Fine-tuning in Transfer Learning

To understand fine-tuning and the processes involved in fine-

tuning a transfer learning network, the CNN must be clearly

understood. We define fine-tuning as the process of taking a

pretrained model (that is, a model that has learned useful

features from a large dataset) and adapting the model to learn

another often related task-specific dataset [7]. For instance,

the Efficient.Net series was trained on the ImageNet-1k

dataset of cats. However, we can use the same model to

classify medical images with few datasets. This is highly

significant in model development as it allows researchers to

leverage existing solutions to solve other related problems.

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 52

According to Karlsson and Runelöv (2021), transfer learning

involves using existing knowledge to solve related tasks [8].

This is how the human brain solves problems. The human

brain has learned from experiences over the years. At a time

when people are required to make concrete decisions, the

brain transfers the knowledge it has obtained from previous

experiences to learn the pending situation [16]. This enables

the brain to make informed decisions by drawing on prior

knowledge and experience. In the same vein, transfer learning

is based on the idea that knowledge gained from large data

can be transferred to solve other related problems.

3.1. Cognitive Process of Fine-Tuning: Human Brain

Analogy

The brain adapts and refines previously learned knowledge to

learn new tasks through the process of refinement [16].

Drawing on cognitive science and neuroscience, the human

brain learns by a dynamic interaction between prior

knowledge (existing mental schemas) and new situations.

According to the Cognitive Science Insight, Schema theory

(Bartlett, 1932) suggests that the brain stores generalized

information that helps in understanding new situations [17].

This process involves making small modifications to existing

schemas or forming new sub-schemas that are more specific

to the new context [17]. Carey (1991) argued that the concept

of fine-tuning is similar to the conceptual change, where

existing knowledge is modified [18]. Neuroplasticity (Hebb,

1949) also supports the idea that the brain can readjust or

reorganize to adapt its neural connections, reinforcing useful

patterns while discarding irrelevant or outdated ones [19].

Hatano and Inagaki (1986) supported the argument implying

that the transfer process is akin to adaptive expertise, where

individuals modify their approach and methodologies as they

gain more expertise, revealing that the prefrontal cortex and

hippocampus are involved in human memory management

and long-term memory integration [20].

Figure 1 shows fine-tuning processes in the brain [16]

Figure 1 above explain the processes involved in knowledge

refinement of the brain. The brain readjusts or refines existing

knowledge to solve present situations [32].

3.2. CNN architecture

Since this research adopt image dataset, it is necessary to

explain the CNN architecture to demonstrate the fine-tuning

processes. There are so many CNN models that have been

developed over the years. However, they almost follow

similar architecture even though some architecture may differ

slightly from others.

Figure 2 shows the CNN architecture

3.2.1. Input layer

The input layer of a CNN is the first layer that receives the

raw image data for processing. It accepts images with specific

characteristics, such as dimensions and channels. The

dimension of the image is its size in pixels (height x width),

while the channel indicates a colored image [Red, Green,

Blue]. For instance, EfficientNetB0, a pre-trained CNN

architecture, accepts images of dimensions [224 x 224 x 3].

224 by 224 represents the height and width of the image,

while 3 indicates the channels. Grey images are represented

by [height x width x 1], which indicates that grey images

require a single channel to indicate the intensity of the pixels.

3.2.2. Pre-trained Base Model (Frozen weights)

The next layer of the CNN network from Figure 2 is the

pretrained layer. The pretrained model is also called the base

model, and it has several sub-layers, which are frozen. The

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 53

pre-trained base model refers to the part of the architecture

that has been pre-trained on a large dataset like ImageNet.

Before fine-tuning, the base layers are frozen, enabling the

architecture to maintain the features of the model trained with

ImageNet. During training, the weights of the base model are

kept constant (not updated), allowing the model to make

predictions on a new dataset with the features of the trained

model on ImageNet. Training the base model (with frozen

layers) with new datasets offers several advantages, one of

which is the ability to train effectively with a small image

dataset [12]. Second, the trained model can leverage the

feature extraction capabilities of the base model [12]. Third,

when the base model is kept frozen, the model is only trained

with the custom layer. This improves the speed of training

and also reduces the likelihood of overfitting [12].

The pretrained base model, as shown in Figure 2, has four

layers: convolutional layers, batch normalization layers,

activation layers, and pooling layers, though the arrangement

of the layers can vary slightly in different CNN architectures

like EfficientNetB0 and VGG16 architectures.

I. Convolutional layers

The convolution layer is one of the most significant layers of

the CNN architecture. Its function is to extract features from

the images [21]. Convolution is a process of extracting

features from the input images and it does this by computing

the dot products of the image matrix with the kernel matrix as

shown in Figure 3.

Figure 3 shows the convolution process [21]

The kernel is a 3x3 matrix, and it is used to multiply the

image matrix to produce an activation map (convoluted

output). The process performs a dot product, which is added

to produce the activation map, as shown. This procedure is

carried out for each of the image matrices. The stride allows

the kernel matrix to move over the image matrix. A stride set

as 1 means that the kernel moves over the image matrix one

to the left, right, up, and down to calculate the convoluted

output. Increasing the dimension of the kernel to 5x5 or 7x7

and the stride to 2 or more affects the depth of the features

extracted negatively (more detailed features will be extracted

when the kernel matrix and the stride are smaller), though the

convolution process will be faster [22].

II. Batch normalization

To simplify batch normalization, it is necessary to consider

each word separately. Normalization is a technique in

machine learning that entails converting the pixel values of an

image to a standard range, typically between 0 and 1 or -1

and 1. The essence of normalization is to enhance the

convergence speed and stability of training algorithms [22]. It

also ensures that the numeric input values of the images are

uniform, mitigating gradient vanishing or explosion problems

during the training phase [22]. This preprocessing step is

particularly significant when using activation functions such

as sigmoid or hyperbolic tangent (tanh), as they are sensitive

to the input data scale.

The study done by Norhikmah, Afdhal, and Rumini (2022)

reaffirms that normalization enhances overall performance

and improves the training process [23]. They attributed the

improved performance to the reduction in numerical

instability and the promotion of faster gradient descent

convergence. Krizhevsky, Sutskever, and Hinton (2012)

found that normalization prevents CNNs from using a wide

range of numerical data, thus promoting the model's ability to

generalize across various datasets [22]. Normalization

techniques include min-max normalization, which scales the

pixel values within a specified minimum and maximum

range, and z-score normalization, which scales the numeric

values based on the mean and standard deviation of the

dataset.

To simplify, the image dataset in EfficientNetB0 has a

dimension of 225 x 225 pixels. In other words, each pixel in

the dataset is within the range of 0 to 225. This dataset will

not scale properly within this range during training, thus, a

need for normalization [25]. Normalization is done by

dividing the data by 225 to convert the data to within 0 and 1

[27]. For batch normalization, the data are converted to

within 0 and 1 after the convolutional process. However, this

process is done in a batch of 32 and not a single input.

III. Pooling layer

The pooling layer is a significant component of the CNN,

which is used primarily for down sampling (reducing) the

activation map (feature map) created by the convolution layer

[24]. The essence is to focus on the most important features

while reducing the image size. Imagine you have the image of

a cat, and you want to shrink it, but you don’t want to lose the

most important part, which is the eyes, edges, and shapes.

Pooling operations work by sliding a window across the input

feature map and summarizing the most important features

within that window [25]. There are several types of pooling

layers but the most common are max pooling and average

pooling. While max pooling selects the maximum values

from the window, capturing the most important features, the

average pooling calculates the average values, providing a

more generalized representation of the features.

Figure 4 below shows the pooling process. Here, the pooling

process selects the maximum number of the feature map.

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 54

Figure 4 shows the max pooling process of a CNN [25]

Max pooling is widely used in CNNs due to its ability to

retain the most important features while discarding less

relevant information. For example, if a feature is highly

activated within a certain region of the input image, max

pooling will ensure that this activation is preserved in the

down sampled output. This process reduces the spatial size of

the feature maps and also helps to make the network more

invariant to small translations and distortions in the input

data. As a result, pooling layers play a crucial role in

enhancing the robustness and efficiency of CNNs by enabling

the network to focus on the most critical features and

reducing the computational burden associated with large

input dimensions [25].

Here's a detailed breakdown of the formula:

𝑂𝑢𝑡𝑝𝑢𝑡(𝑖, 𝑗) = 𝑚𝑎𝑥(𝑚,𝑛)∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖,𝑗)𝐼𝑛𝑝𝑢𝑡(𝑚, 𝑛) -------- (1)

Output (𝑖, 𝑗): The value of the pooled output at position (𝑖, 𝑗)

Input (𝑚, 𝑛): The value of the input feature map at position

(𝑚, 𝑛) within the window.

Window (𝑖, 𝑗): The window of size (e.g., 2x2, 3x3) that is

applied at position (𝑖, 𝑗) on the input feature map.

Max: The max function, which selects the maximum value

within the window.

3.2.3. The Custom Head Classification

The custom head is the third part of the transfer learning

network. It represents the fully connected layer. The earlier

layers (convolutional, normalization, and pooling layers) scan

the images, spot edges, textures, and shapes, and transform

the images into a list of features. The head classification

looks at the features (numbers) and decides which images

they are. If we have the images of dogs, cats, and rabbits at

the input layers, the CNN learns from training data and

classifies the test data into their corresponding image

categories [33].

How does it work? After the features are flattened in the

flatten layer into 1 1-dimensional vector, the fully connected

layer processes this vector by applying a linear transformation

followed by a non-linear transformation function. The

transformation enables the network to learn complex

representations and relationships, guiding the network to

classify the input data more accurately. Typically, the fully

connected layer is positioned at the end of the network. and is

responsible for producing the final output, such as class

scores in classification tasks [28]. The head classification

layer can be customized. The researcher can decide the

number of fully-connected layers, use dropout/batch-norm for

regularization, the number of labels, and the activation

function, which could be Softmax for single-label

classification or Sigmoid for multi-label classification [34].

The table below summarizes some terms in the CNN sample architecture which are not preciously explained.
Table 2 shows some terminologies used in CNN network

 Layers Parameters Meaning

1 Input layer The input layer accept the images in dimension [225 x 225 x 3], where [225 x 225] represent the

image dimensions and the 3 represent the image channel [Red, Blue, and Green]

2 Conv2D (3x3,

stride 2)

Con2D Represent a two-dimensional convolution. This means that the input is a 2-dimensional shape.

Images has the height by weight, while videos are in 3 dimensions

3 x 3 Kernel size (as shown in Figure 2). Height x width

Stride 2 Enables the kernel (3x3 matrix) to move 2 pixels at a time through the feature map. This is meant

for feature extraction from each image.

padding Necessary to preserve the kernel from falling off the feature image (preserve spatial dimension)

3 BatchNorm The batch normalization reduces the internal covariate shift (i.e. adjust the out of the activation

map into values between 0 and 1), speed up convergence, and reduce overfitting.

4 Swish Activation An activation function introduced by Google in 2017. It outperforms ReLU in deep networks

(~0.5 – 1% improvement) and improves smooth gradients

3.4. Fine-Tuning (Unfreezing) the CNN Layers

Having understood the CNN network, we can unfreeze nearly

all the layers in the transfer learning network though such act

is not advisable because training all layers do not amount to

better accuracy. Besides, the more the number of layer

unfrozen, the more the computational resources required.

There is no definitive method for determining the optimal

number of layers to fine-tune in a transfer learning network to

achieve maximum accuracy. This is the challenge that this

study aims to unravel.

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 55

4. Methodology

In this study, systematic and empirical approach are used to

obtain the optimal number of layers to unfreeze. The steps

taken are summarized below:

1. Collect the image datasets

2. Set up the experiments

3. Training and fine-tune Efficient|NetB0, ResNet152,

and VGG16

4. Plot the graph and use regression to find the equation

5. Use the Grad-CAM method to also determine the

range of layers to fine-tune to obtain optimal

accuracy

4.1. Prepare Your Data

More than one dataset is used in the experiment. The essence

is to have a variety of outcomes. Split your dataset into

training, validation, and test sets. Ensure your data is properly

preprocessed and augmented if necessary.

I. Food-101 dataset

The Food-101 dataset is a large-scale collection of food

images categorized into 101 classes, each representing a

different type of food. The dataset contains 101,000 images,

with 1,000 images per class. 75% of the dataset make up the

training data, while 25% make up the test data. 10% of the

Food-101 dataset is used for the experiments to enhance

faster processing times and reduce computational

requirements. It also allows for quicker iterations and

experimentation cycles. 10% of the Food-101 dataset amount

to 10,100 images, 75% of whose is used for training and 25%

for testing.

Figure 6 shows the Food-101 dataset

II. CIFAR-10 dataset

The CIFAR-10 dataset consists of 60,000 labeled images

divided into 10 classes: airplane, automobile, bird, cat, deer,

dog, frog, horse, ship, and truck. Each class contains 6,000

images. The dataset was created by Alex Krizhevsky, Vinod

Nair, and Geoffrey Hinton. The images are split into 50,000

for training and 10,000 for testing.

Figure 7 shows the CIFAR-10 dataset

III. Stanford Dogs Dataset

The Stanford Dogs dataset is a well-known dataset for fine-

grained image classification, specifically focused on different

breeds of dogs. The dataset has 20,580 images with 12,000

training images and 8,580 test images. It has a class of 120

different breeds of dog and each class has 120 images of the

same type of dog. The images generally vary in resolution,

often ranging from around 200x200 pixels to more than

500x500 pixels, and many images are larger than this range,

often going up to 1024x1024 pixels or higher. Given the

high-resolution nature of the images, the dataset is well-suited

for tasks that require capturing fine details and textures,

which is important for fine-grained classification tasks like

distinguishing between different breeds of dogs.

Figure 8 shows the Stanford Dogs dataset

4.1.1. Reasons for different dataset

Training machine learning models with a wide variety of data

types is crucial for improving their robustness and

generalization capabilities, which helps the model to perform

better on real-world tasks where input data can be highly

variable and unpredictable [11]. By training with different

data types, models can also handle noise and variability more

effectively, leading to improved performance across various

applications [29].

Besides, training a machine learning model with a wide

variety of data types helps prevent over-fitting, where a

model becomes accustomed to the training dataset, but

performs badly in the testing dataset. In other words, when

models are trained on a homogeneous dataset, they may fail

to generalize to new and unseen data that differ from the

training dataset. By integrating multiple data types, the model

gains a deeper understanding of the underlying relationships

within the data, leading to improved generalization and more

accurate predictions. This approach is particularly beneficial

in complex tasks, such as multi-modal learning and real-

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 56

world applications, where data is rarely uniform and often

comes from multiple sources.

4.2. Set up Baseline Experiment
The experimental approach involves unfreezing layers by

layers and training the architecture to determine the accuracy

of each. In fact, most methods, such as statistical,

computation, etc., rely on the experimental approach to obtain

the optimal solutions. The experimental approach has the

following steps, which are discussed in detail:

1. After obtaining the data, prepare the environment. It

could be Anaconda Notebook, Python IDE, Google

Colab, Visual Studio, or any other platform where

Python code can be written.

2. Import the data and create the code for any of the

transfer learning CNN networks (EfficientNet,

ResNet16, ResNet101, Inception, etc.)

3. Run the base model and display results.

4. Incremental Fine-Tuning Approach: Gradually

unfreeze more layers from the pre-trained model and

fine-tune them. For each configuration, keep other

hyperparameters constant. The steps are as follows:

 Fine-Tune Top Layers: Start by unfreezing only

the top few layers of the pre-trained model and

train the network. Record the performance on

the validation set.

 Increase Fine-Tuning Depth: Incrementally

unfreeze additional layers (e.g., unfreeze the

next block of layers) and repeat the training

process.

 Monitor Performance: At each fine-tuning level,

evaluate the model’s performance on the

validation set to assess how the depth of fine-

tuning influences overall effectiveness.

4.3. Grad-CAM Approach

Machine learning models especially neural network, which

has been successful in solving most dynamic human problem

is not interpretable. In other words, managers and

organizations find it challenging to explore AI in critical

situations as they lack trust in the system due to its

unexplainable decision-making processes [26]. However,

Grad-CAM has been useful in the interpretability of complex

neural network [27]. In this research, we utilize Grad-CAM

as one of the techniques to help identify the optimal number

of layers to fine-tune in order to achieve the best validation

accuracy.

4.3.1. How does it work?

Grad-CAM helps to identify the most important features of an

image learned by machine learning models. Grad-CAM

identifies the regions of an image that are most influential in a

convolutional neural network's final decision by highlighting

the areas with the highest impact on the output prediction

[27]. This is done by indicating the importance of each pixel

in relation to the class by increasing or decreasing the

intensity of the pixel [28]. For instance, if a Grad-CAM

visualization is used to generate the image of a cat, the Grad-

CAM can indicate the extent to which different parts of the

pixels of the image correspond to a cat.

The class activation map (CAM) reveals the most significant

parts of the image used for model prediction. It does this by

combining the values from the last convolutional layer, using

weights linked to the class the model predicted [29]. The

result is a heatmap that highlights key areas the model

focused on. This heatmap is then resized to match the original

image size so we can see exactly what the model was looking
at [30].

5. Result and Discussion

5.1. Results of the experimental method

Three categories of experiments were done: ResNet152

model with cifar10 dataset, VGG16 with Stanford dogs

dataset, EfficientNetB0 model with Food-101 dataset,

ResNet152 experimental results with cifar10 dataset

The ResNet152 has 152 block layers but 514 layers. Table 3

below shows the result of the fine-tuning experiments over 5

epochs

Table 3 shows the outcome of the ResNet152 experiment

Model
Layers

Unfreeze
Accuracy Loss

Val-

accuracy
Val-Loss

Base

Model
0 0.2961 1.9466 0.2966 1.9569

1 207 0.5345 1.3091 0.5236 1.4021

2 310 0.3714 1.6755 0.3616 1.7522

3 180 0.5108 1.3929 0.5022 1.4012

4 100 0.4834 1.4553 0.4735 1.4756

5 20 0.4422 1.5742 0.4389 1.6109

6 230 0.3914 1.6773 0.3767 1.7843

7 210 0.5259 1.3491 0.5201 1.3569

8 10 0.4407 1.5885 0.3879 1.8210

ii. Fine-tuning the VGG16 with Stanford dogs

dataset

The VGG16 has 18 layers. The table below shows the result

of the fine-tuning experiments over 10 epochs

Table 4 shows the outcome of the VGG16 experiment

Model
Layers

Unfreeze

Accura

cy
Loss

Val-

accuracy

Val-loss

function

Base

Model
0 0.7516 0.7041 0.6217 1.1544

1 18 0.9699 0.0918 0.8373 0.6029

2 10 0.9568 0.1308 0.8136 0.6844

3 14 0.9619 0.1118 0.8361 0.5994

4 17 0.9647 0.1049 0.8315 0.6264

iii. Fine-tuning the EfficientNetB0 with 10% of the

Food-101 database

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 57

The EfficientNetB0 has 237 layers. Table 5 shows the result

of fine-tuning experiments over 5 epochs.

Table 5 shows the outcome of the EfficientNetB0 experiments
Model Layers Accuracy Loss Val_acc Val_loss

Base

Model
0 0.7278 1.1670 0.6243 1.4512

1 10 0.8797 0.5386 0.6635 1.2512

2 20 0.9040 0.4217 0.6662 1.2842

3 50 0.9380 0.2741 0.6642 1.3458

4 150 0.9315 0.2508 0.6491 1.4981

5 237 0.8879 0.4007 0.5867 1.7758

6 100 0.9494 0.2024 0.6452 1.5234

7 120 0.9378 0.2304 0.6352 1.5477

5.2. Interpreting the Experiments Using Graphical

Method

Tables 3, 4, and 5 shows the outcome of the experiments.

Based on these results, a key question arises: Can we identify

a specific layer or a range of layers to fine-tune in order to

achieve the best possible validation accuracy? To explore this

question further, plotting a graph of the experimental results

can help visualize the relationship between the layers fine-

tuned and the validation accuracy. This graphical

representation will provide insights that may help answer the

research question more clearly.

5.2.1. Interpreting the ResNet152 results

The graphs in Figure 9 and 10 shows the validation accuracy

and the validation of the ResNet152 experiments

Figure 9 shows the validation accuracy against the unfrozen layer for the

ResNet152 experiments

Figure 10 shows the validation loss against the unfrozen layer for the

ResNet152 experiments

The curve is a ∩-shape, which confirms a quadratic

polynomial of the form:

Val-Accuracy = −𝑎𝐿2 + 𝑏𝐿 + 𝑐 -------------- (1)

Where:

 L = number of unfrozen layers,

 The maximum point (vertex) seems to be somewhere

around 150 layers.

From visual estimation:

 At 0 layers, accuracy ≈ 0.35

 At ~150 layers, accuracy peaks at ≈ 0.51

 At 310 layers, accuracy dips to ≈ 0.34

Using regression, this graph supports the equation:

Val-Accuracy ≈−0.00000673𝐿2 + 0.001554𝐿 + 0.35 ------

----------------- (2)

(Check appendix I for how the equation is obtained)

The validation loss is a concave parabola with equation Val-

Accuracy = 𝑎𝐿2 + 𝑏𝐿 + 𝑐 ------------------ (3)

Loss starts high at ~1.85, reach the minimum at ~1.42 around

150 layers, then rise again.

Supports earlier regression:

Val-Loss ≈ 0.000017𝐿2 − 0.0054𝐿 + 1.85 ------------ (4)

Metrics

The Mean Square Error (MSE) and Mean Absolute Error

(MAE) is used to determine the acceptance of the results.

Substituting the layers into the Val-accuracy equation

 −0.00000673𝐿2 + 0.001554𝐿 + 0.35, we obtain the table

below:

Table 6 shows the actual and predicted val-accuracy of ResNet152

Layers Actual Val-accuracy Predicted Val-

accuracy

0 0.2966 0.35

10 0.3879 0.3649

20 0.4389 0.3784

100 0.4735 0.4381

180 0.5022 0.4117

207 0.5236 0.3833

210 0.5201 0.3796

230 0.3767 0.3514

310 0.3616 0.1850

The actual Val-accuracy is obtained from the experimental

results in Table 3. The MSE is calculated using the formula: ,

while the MAE is obtain using the formula:

The Mean Squared Error (MSE) is 0.00975 and the Mean

Absolute Error (MAE) is 0.0828. A low MSE and MAE

indicates that the polynomial regression model performs

excellently well. A MAE of 0.0828 means that on average,

the predicted values are only about 8.28% different from the

actual values. A low MSE also confirms the model’s good

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 58

performance, especially since MSE gives more weight to

larger errors.

To determine the number of layer that gives the optimal

solution, we substitute the layers from 0 to 514 into the Val-

accuracy equation. The easiest way to do this is a run a

Python code with input [0, 1, 2... 514] and obtain the

corresponding Val-accuracy. Note, ResNet152 has 514

layers. The outcome shows that the optimum accuracy is

obtained at layer 107 at Val-accuracy of 0.439706. Fine-

tuning the top 107 layers is 22% of the 514 layers of the

ResNet152.

5.2.2. Interpreting the EfficientNetB0 results

Figure 11 shows the validation accuracy against the unfrozen layer for the
EfficientNetB0 experiments

Figure 12 shows the validation loss against the unfrozen layer for the

EfficientNetB0 experiments

This is a convex (∩-shaped) parabola → modelled with a

quadratic polynomial.

The peak is around 50 layers, and then accuracy declines.

So, the general form is: Val-Accuracy = −𝑎𝐿2 + 𝑏𝐿 + 𝑐 ------

------- (1), where a < 0

Using regression, the estimated equation of the curve is

Val-Accuracy ≈ −0.000015𝐿2 + 0.0016𝐿 + 0.625 -------

(5)

For the val-loss function, we use: Val-loss = 𝑎𝐿2 + 𝑏𝐿 + 𝑐 ---

---------- (3), where a > 0

Estimated equation (fitting the curvature): Val-loss ≈

0.00002𝐿2 − 0.002𝐿 + 1.28 ---------------- (6)

Metrics

Table 7 shows the actual and predicted val-accuracy of EfficientNetB0

Layers Actual val-accuracy Predicted val-accuracy

0 0.6243 0.6250

10 0.6635 0.6395

20 0.6662 0.6510

50 0.6642 0.6675

100 0.6452 0.6350

120 0.6352 0.6010

150 0.6491 0.5275

237 0.5867 0.1617

The Mean Squared Error (MSE) is 0.0247, and the Mean

Absolute Error (MAE) is 0.0793. This means the model's

predictions are, on average, quite close to the actual values.

MSE shows how far off the predictions are by squaring the

errors, so it gives more weight to bigger mistakes. MAE is

easier to understand, showing that the predictions are off by

about 0.0793 on average.

To determine the number of layers that gives the optimal

solution, we substitute the layers from 0 to 237 into the Val-

accuracy equation. The easiest way to do this is a run a

Python code with input [0, 1, 2... 237] and obtain the

corresponding Val-accuracy. Note, EfficientNetB0 has 237

layers. The outcome shows that the optimum accuracy is

obtained at layer 54 at Val-accuracy of 0.667660.

Unfreezing the top 54 layers is approximately 22.7% of

the 237 layers

5.2.3. Interpreting the VGG16 results

Figure 13 shows the validation accuracy against the unfrozen layer for the

VGG16 experiments

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 59

Figure 14 shows the validation loss against the unfrozen layer for the VGG16
experiments

Using polynomial regression, the

Val-Accuracy ≈ −0.0007𝐿2 + 0.0306𝐿 + 0.62 ---------- (7)

The Val-Loss ≈ 0.0018𝐿2 − 0.056𝐿 + 1.15 -------------- (8)

Metrics

Table 8 shows the actual and predicted Val-accuracy of VGG16

Layers Actual Val-accuracy Predicted Val-accuracy

0 0.6217 0.6200

10 0.8136 0.8560

14 0.8361 0.9112

17 0.8315 0.9379

18 0.8373 0.9440

The Mean Squared Error (MSE) is 0.00603 and the Mean

Absolute Error (MAE) is 0.06646, indicating that the

predicted Val-accuracy deviate from the actual values by

about 0.603% in accuracy.

To obtain the number of layer that gives the optimal Val-

accuracy, we substitute the 18 layers of the VGG16 into the

Val-accuracy equation −0.0007𝐿2 + 0.0306𝐿 + 0.62 . The

easiest way to do this is to write a Python code with input [0,

1,2,3,4...18] and the Val-accuracy as the corresponding

output. The outcome shows that the optimal accuracy is

obtained at layer 18, which gives a Val-accuracy of 0.944

5.2.4. The General Equation

There are some challenges with the experimental approach.

The nature, size, quantity, robustness of the dataset; and the

hyperparameters enabled can impact the validation accuracy

which in turn can affect the regression equation [30].

Therefore, it becomes quite challenging to have equations for

different kinds of scenarios. One way to resolve this is to

deduce a general equation which considers most of the

parameters and hyperparameters that may affect the accuracy

of the models. A simplified estimated equation for this

problem must consider:

 Number of unfrozen layers (L)

 Model size (N, often total number of layers or

parameters)

 Number of epochs (E)

 Sometimes, dataset size

 Constants or learnable coefficients like α (alpha), β

(beta), γ (gamma), etc.

The general equation is given as

𝑉𝑎𝑙 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∝ −
𝛽𝐿2

𝑁
+ 𝛾log (𝐸) ----------- (9)

Where

 α = theoretical max accuracy (dataset-architecture

upper bound)

 β = penalty for unfreezing layers (controls

overfitting or instability)

 L = number of unfrozen layers

 N = total number of layers in the network (e.g., 152

for ResNet152)

 γlog(E) = gain from training epochs, with

diminishing returns

This equation captures three important trends about fine-

tuning processes

1. Performance improves with increasingly

logarithmically time (increasing number of epochs)

2. Unfreezing too many layers hurts performance

especially when processing limited and small sized

dataset. This is reflected by the term

3. Accuracy is capped by an architecture- and data-

dependent ceiling α

The equation assumes that:

1. You’re using transfer learning (pretrained models)

2. You’re fine-tuning on a dataset with limited size

3. You want to control training time and overfitting

This formula can be extended by looking at the dataset

complexity factor or the number of training samples and the

number of model parameters P

𝑉𝑎𝑙 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∝ −
𝛽𝐿2

𝑁
+ 𝛾 log(𝐸) + 𝛿 log(𝑆) +

𝜌log (𝑃) -------------------- (9)

5.3. Grad-CAM Results and Interpretations

Figure 13 and 14 shows the Grad-CAM result for the

EfficientNetB0 trained on 10% of the Food-101 database. It

shows how Grad-CAM progressively focuses its attention on

the relevant part of the images.

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 60

Figure 15 shows the Grad-CAM visualization learning from layer1 to layer 4

Figure 16 shows the Grad-CAM visualization learning from layer1 to layer 4

i.The pizza image: The image on the far left displays

an original sample from the Food-101 dataset. The

image captures the pizza and its surrounding items.

ii.Layer 1: At this level, the model output a broad and

diffused image. The activation is minimal and

scattered, with only small patches, showing random

spots across the pizza. This reveals that the layer 1 of

the EfficientNetB0 model captures the edges,

textures and colors.

iii.Layer 2: In this layer, the network concentrates more

with the region of the pizza, but still captures the

surroundings. This shows that the model could

differentiate between the pizza and the background

using more complex features such as shapes or small

patterns.

iv.Layer3: At this level, the model focuses on the

pizza. High activations are now clearly visible across

the center of the pizza, ignoring most of the

background. This indicates that the layer is

beginning to recognize mid-level features relevant to

the pizza class, such as crust edges or topping

distribution.

v.Layer 4: This layer intensely focusses on the pizza,

especially its key components like toppings. The

background is almost entirely ignored. This indicates

that the model captures high-level, task-relevant

features of the pizza at this level. These features are

what the model use to make its final predictions

From the Grad-CAM image output, the model learns the

features of the images at stages three and four. To obtain

higher accuracy without overfitting, the deeper layers (those

closer to the output, specifically Layer 3 and Layer 4) should

be unfrozen as these contain mid-level and high-level class-

specific features.

EfficientNetB0 has seven blocks (block1a, block2a,...,

block7a) and the deeper blocks are the later blocks (6a, 6b, ...,

7a) [8]. The table below shows the number of blocks and the

corresponding layer range

Table 8 shows the blocks and the corresponding number of layers of the

EfficientNetB0

Block Name Count of layers Layer index range

Block1a 14 layers 2 – 15

Block 2a 16 layers 16 – 31

Block 2b 14 layers 32 – 45

Block 3a 17 layers 46 - 62

Block 3b 14 layers 63 – 76

Block 4a 16 layers 77 – 92

Block 4b 14 layers 93 – 106

Block 5a 16 layers 107 – 122

Block 5b 14 layers 123 – 136

Block 5c 14 layers 137 – 150

Block 6a 17 layers 151 – 167

Block 6b 16 layers 168 – 183

Block 6c 16 layers 184 – 199

Block 6d 16 layers 200 – 215

Block 7a 21 layers 217 – 236

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 61

How many layers fall within the block 6a, 6b and 7a? From

the Table, we have 17 layers + 16 layers + 21 layers making a

total of 54 layers. This shows that the 54 layers closest to the

output should be unfrozen, which is approximately 23% of

the 237 layers

To effectively unfreeze only 6a, 6b, and 7a blocks, the Python

code below print out the exact layers and confirm the count.

Then, the number of layers indicated can then be unfrozen to

obtain the optimal accuracy.

from tensorflow.keras.applications import EfficientNetB0

model = EfficientNetB0(weights='imagenet',

include_top=False)

for i, layer in enumerate(model.layers):

 if 'block6a' in layer.name or 'block6b' in layer.name or

'block7a' in layer.name:

 print(f"{i}: {layer.name}")

Note that blocks 6c and 6d are not unfrozen. The reason is

that deeper layers like Layer 3 and Layer 4 focused

specifically on the pizza, especially in Layer 4, indicating

high-level, class-specific feature detection, which happens at

blocks 6a, 6b, and 7a. Fine-tuning more layers will increase

training time, risk overfitting, and require more resource

usage. Since Grad-CAM didn’t show significant activation in

6c and 6d, unfreezing them may add unnecessary complexity,

and may not have any impact on performance. Researchers

should unfreeze blocks 6c and 6d when the Grad-CAM shows

significant, task-specific activations in those layers, and when

there is a large dataset. Note that this experiment only uses

10% of the dataset to reduce computational resources and

save time. As a rule, when working with EfficientNetB0 with

a small dataset, unfreeze the blocks 6a, 6b, and 7a; however

for larger datasets, gradually unfreeze the 6a, 6b, 6c, 6d, and

7a blocks. For each block unfrozen, run the experiment to

determine the validation accuracy.

5.4. Comparing the results in the Experimental and Grad-

CAM approach

In the experiment involving ResNet152, unfreezing

approximately the top 107 layers, which is approximately

21% of the 514 layers gives the optimal accuracy. In the same

vein, in the EfficientNetB0 experiment, unfreezing the top

22% of the 237 layers gives optimal validation accuracy.

However, a different result was obtained in the VGG 16

network, which requires the entire layers to be unfrozen to

obtain an optimal validation result. The difference in the

VGG 16 architecture is that it is an extremely lightweight

architecture that contains only 18 layers.

The Grad-CAM experiment gives similar results to those of

experimental results. Findings from the Grad-CAM approach

show that approximately 23% of the EfficientNetB0 gives the

optimal result. This is the same as the result obtained in

EfficientNetB0 using an experimental approach

(approximately 22%). Besides, the result obtained through

this study perfectly aligns with previous findings [9], [13],

[14], [15], [30], etc. which established that fine-tuning a few

top layers increases accuracy, however, unfreezing too many

layers affects the accuracy.

6. Conclusion

This study investigated the optimal layers to unfreeze in a

CNN network to obtain the best validation accuracy. The first

part of the study conducted a comprehensive literature review

to identify existing gaps and found that no explicit research

has been done to determine the optimal number of layers to

unfreeze in a CNN network for achieving the best validation

accuracy. A few research established that unfreezing the few

top layers of a CNN network is likely to increase accuracy.

Research also established that unfreezing to many layers

negatively affects validation accuracy, resulting in overfitting,

but much has not been done to establish the range of optimal

layers in a CNN network.

The second part of the study considers CNN architecture and

expressly explains the fine-tuning processes. The

methodology section explains the experimental processes and

the Grad-CAM approach used to determine the optimal

number of layers. The result sections derive regressive

equations through the experimental approach and determine

the MAE and MSE metrics to juxtapose the accuracy of the

regressive equations. A general equation was deduced. This

equation considers further hyperparameters that affect the

optimal number of layers in a CNN network.

The results obtained through the experimental and Grad-

CAM approaches closely align. The results show that fine-

tuning the top one-fifth of pre-trained layers (between 20%

and 25%) gives the optimal accuracy. However, VGG16

requires the entire layers to be unfrozen to obtain optimal

solution. The reason is because it has only 18 layers. The

outcome from both approaches also supports previous studies

which implies that unfreezing a few top layers improves

validation accuracy. This study expressly concludes that fine-

tuning the top one-fourth layers of a pre-trained model will

give an approximate training accuracy and validation

accuracy. At these layers, the loss will also be minimal.

6.1. Significance of the research

It’s been quite challenging to obtain the approximate number

of layers to unfreeze to obtain an optimal solution. Much

literature has proposed a general rule of thumb but could not

specify in particular, the fine-tuning depth. This research is

highly significant as it provides an answer to a long-awaited

research gap. Besides, researchers, AI and ML experts, data

analysts, and even computer science students, who work with

transfer learning do not need to systematically unfreeze 514

layers in the case of ResNet152 to obtain a fairly accurate

solution as the approach is computationally expensive and

time-consuming.

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 62

6.2. Limitations

Even though this study deduces an equation for each CNN

network experimented and a general equation to determine

the number of layers to unfreeze for most CNN networks, the

general equations do not consider all hyperparameters that

might affect the number of layers to unfreeze to obtain the

optimal solution. Besides, the quantity and quality of the data

can change everything. For example, when the ResNet152

model is trained on a small, simple dataset like CIFAR-10,

the validation accuracy is quite small. This isn't the same

result when ResNet152 is trained with a large dataset such as

Food-101. You’ll get a different result than if you use a larger

or more complex dataset. Parameters like how balanced the

classes are, how many images you have, and how clear the

labels are all affect how many layers you should unfreeze.

6.3. Future Research

The experimental method was used to obtain the range of

layers to fine-tune to obtain optimal solutions. However, three

CNN networks were only considered (ResNet152, VGG16,

and EfficientNetB0). Further research can consider more

CNN networks to corroborate the findings obtained in this

study. Moreover, the Grad-CAM approach was only done on

the EfficientNetB0 network. There is a need to investigate if

the Grad-CAM approach would give similar findings in other

architecture. Lastly, a more robust study can be done in the

future to deduce general equations that consider all

hyperparameters in a CNN network.

Author’s Statement

The author declares that there is no conflict of interest related

to this study and no financial support, sponsorship, or funding

was received from any organization or institution for the

conduct of this study. The author affirms that the research

was conducted independently without influence from any

third parties.

Acknowledgement – The author conducted the research

independently, however, the author acknowledges all

researchers who have conducted previous research on fine-

tuning pre-trained models as their works contributed

immensely to the success of this study. The author is most

grateful for the valuable comments and suggestions provided

by the reviewers, which helped improve the quality of the

manuscript.

Funding Sources – No funding is received from any public,

commercial, or not-for-profit agencies.

Author’s Contribution – The author solely conceived the

study, conducted the literature review, identified the gaps and

research questions, investigated the approach to answer the

research questions, collected and analyzed the data, and wrote

the manuscript. The author also reviewed and approved the

final version of the manuscript.

Conflict of Interest – The author declares that there is no

conflict of interest regarding the publication of this research.

Data Availability – The datasets used in this study (Food-

101, CIFAR-10, and the Stanford Dogs dataset) are readily

available online and can be accessed from their respective

official repositories. The Food-101 datasets can be accessed

from https://www.vision.ee.ethz.ch/datasets_extra/food-101/,

while the CIFAR-10 is available through the

TensorFlow/Keras datasets module or at

https://www.cs.toronto.edu/~kriz/cifar.html. The Stanford

Dogs can be accessed at

http://vision.stanford.edu/aditya86/ImageNetDogs/

The pre-trained architectures are meant to use data in a

specific image resolution. For instance, EfficientNetB0

processes images in 224 by 224 resolution. However, some of

the Food-101 datasets have higher resolution, resulting in

distortions during training. This may affect the pre-trained

models from capturing high-resolution features of certain

datasets. Besides, 10% of the Food-101 dataset was used.

This is because higher computational resources will be

required to run the experiments on the full Food-101 dataset,

which has 101,000 images.

References

[1] I. Kandel, M. Castelli, “How Deeply To Fine-Tune A

Convolutional Neural Network: A Case Study Using A

Histopathology Dataset,” Appl. Sci., Vol.10, No.10, pp. 3359,

2020. http://dx.doi.org/10.3390/app10103359

[2] Masyitah et al., “A Comprehensive Performance Analysis Of

Transfer Learning Optimization In Visual Field Defect

Classification,” Diagnostics, Vol.12, No.5, pp.1258, 2022,

http://dx.doi.org/10.3390/diagnostics12051258

[3] S. J. Pan, Q. Yang, “A Survey On Transfer Learning,” IEEE Trans.

Knowl. Data Eng., Vol. 22, No.10, pp. 1345–1359, 2009.

[4] B. Q. Huynh, H. Li, M. L. Giger, “Digital Mammographic Tumor

Classification Using Transfer Learning From Deep Convolutional

Neural Networks,” J. Med. Imaging, Vol.3, No.3, pp.034501, 2016.

[5] D. S. Kermany et al., “Identifying Medical Diagnoses And

Treatable Diseases By Image-Based Deep Learning,” Cell,

Vol.172, No.5, pp.1122–1131, 2018.

[6] A. Hosna, E. Merry, J. Gyalmo et al., “Transfer Learning: A

Friendly Introduction,” J. Big Data, Vol.9, pp.102, 2022,

https://doi.org/10.1186/s40537-022-00652-w

[7] M. E. Taylor, P. Stone, “Transfer Learning For Reinforcement

Learning Domains: A Survey,” J. Mach. Learn. Res., Vol.10,

pp.1633–1685, 2009.

[8] A. Karlsson, I. Runelöv, “The Effects Of Fine-Tuning Depth On A

Pre-Trained Alexnet Architecture, Applied To Chest X-Rays,”

KTH Royal Institute Of Technology, School Of Electrical

Engineering and Computer Science, 2021.

[9] A. Gupta, M. Gupta, “Transfer Learning For Small And Different

Datasets: Fine-Tuning A Pre-Trained Model Affects Performance,”

J. Emerg. Investig., 2020,

[10] J. S. Kumar, S. Anuar, N. H. Hassan, “Transfer Learning-Based

Performance Comparison Of The Pre-Trained Deep Neural

Networks,” Int. J. Adv. Comput. Sci. Appl., Vol. 13, Vo.1, 2022.

[11] N. Houlsby et al., “Parameter-Efficient Transfer Learning For

NLP,” 2020.

[12] G. Vrbančič and V. Podgorelec, “Transfer Learning With Adaptive

Fine-Tuning,” IEEE Access, Vol.8, pp.196217–196230, 2020,

http://dx.doi.org/10.1109/ACCESS.2020.3034343

[13] K. S. Lee, J. Y. Kim, E. T. Jeon, W. S. Choi, N. H. Kim, K. Y. Lee,

“Evaluation of Scalability and Degree of Fine-Tuning of Deep

Convolutional Neural Networks for COVID-19 Screening on Chest

X-ray Images Using Explainable Deep-Learning Algorithm,” J

Pers Med, Vol.7, No.4, pp.213–225, 2020, doi:

https://www.vision.ee.ethz.ch/datasets_extra/food-101/
https://www.cs.toronto.edu/~kriz/cifar.html
http://vision.stanford.edu/aditya86/ImageNetDogs/
http://dx.doi.org/10.3390/app10103359
http://dx.doi.org/10.3390/diagnostics12051258
https://doi.org/10.1186/s40537-022-00652-w
http://dx.doi.org/10.1109/ACCESS.2020.3034343

Int. J. Sci. Res. in Computer Science and Engineering Vol.13, Issue.3, Jun. 2025

© 2025, IJSRCSE All Rights Reserved 63

10.3390/jpm10040213.

[14] V. Taormina, D. Cascio, L. Abbene, G. Raso, “Performance of

Fine-Tuning Convolutional Neural Networks For Hep-2 Image

Classification,” Appl. Sci, 10, 6940, 2020

,https://doi.Org/10.3390/App10196940

[15] M. Amiri, R. Brooks, H. Rivaz, “Fine Tuning U-Net for Ultrasound

Image Segmentation: Which Layers,” Electrical Engineering and

Systems Science, 2020. https://doi.Org/10.48550/Arxiv.2002.08438

[16] M. Kardinal, “Fine Tuning in the Brain,” Plos Computational

Biology, Bernstein Coordination Site, 2015.

[17] F. C. Bartlett, “Remembering: a Study in Experimental and Social

Psychology,” 1st Ed. Cambridge, U.K, Cambridge Univ. Press,

1932.
[18] S. Carey, “Conceptual Change in Childhood,” 1st Ed. Cambridge,

Ma: Mit Press, 1991.

[19] D. O. Hebb, “The Organization of Behavior: A Neuropsychological

Theory,” 1st Ed. New York, Ny: Wiley, 1949.

[20] G. Hatano, K. Inagaki, “Two Courses of Expertise. Cognition and

Instruction,” Vol.3, No.4, pp.271-291, 1986.

[21] R. Dhiman, G. Joshi, R. K. Challa, “A Deep Learning Approach for

Indian Sign Language Gestures Classification With Different

Backgrounds,” In Proc. J. Phys.: Conf. Ser., Vol. 1950, pp.012020,

2021. http://dx.doi.org/10.1088/1742-6596/1950/1/012020

[22] A. Krizhevsky, I. Sutskever, G. E. Hinton, “Imagenet Classification

with Deep Convolutional Neural Networks,” In Adv. Neural Inf.

Process. Syst., Vol.25, pp.1097–1105, 2012.

[23] R. Norhikmah, A. Lutfhi, C. Rumini, “The Effect of Layer Batch

Normalization and Dropout on CNN Model Performance for Facial

Expression Classification,” International Journal on Informatics

Visualization, 2022. https://doi.Org/10.30630/Joiv.6.2-2.921

[24] R. Yamashita, M. Nishio, R. Do, K. Togashi, “Convolutional

Neural Networks: An Overview And Application In Radiology,”

Insights Imaging, Vol.9, pp.611–629, 2018.

https://doi.org/10.1007/s13244-018-0639-9

[25] C. Szegedy E. T. Al., “Going Deeper with Convolutions,” In Proc.

Ieee Conf. Comput. Vis. Pattern Recognit. (Cvpr), pp. 1–9, 2015.

[26] B. A. Alejandro, N. Díaz-Rodríguez, J. Del Ser, “Explainable

Artificial Intelligence (XAI): Concepts, Taxonomies,

Opportunities, And Challenges Toward Responsible AI,”

Information Fusion, Vol. 58, No. 82, 2020.

[27] C. Van-Zyl, X. Ye, R. Naidoo, “Harnessing Explainable Artificial

Intelligence for Feature Selection in Time Series Energy

Forecasting: A Comparative Analysis of Grad-Cam and Shap,”

Applied Energy, Vol.353, 122079, 2024,

https://doi.org/10.1016/j.apenergy.2023.122079

[28] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D.

Batra. "Grad-CAM: Visual Explanations From Deep Networks Via

Gradient-Based Localization," IEEE International Conference on

Computer Vision, pp.618-626, 2017. 10.1109/Iccv.2017.74

[29] A. Davila, J. Colan, Y. Hasegawa, “Comparison of Fine-Tuning

Strategies for Transfer Learning in Medical Image Classification.

Image and Vision Computing,” 146, 105012, 2024.

[30] T. M. Adepoju, M. O. Oladele, M. O. Akintunde, A. M. Ogunleye,

“Effect of Fine-Tuning Transfer Learning Layers: A Case Study of

Breast Cancer Classification,” Fuoye Journal of Engineering and

Technology, Vol.9, No.4, pp.660-668, 2024.

[31] X. Zhang, Y. Wang, N. Zhang, D. Dong, B. Chen, “Research on

Scene Classification Method of High-Resolution Remote Sensing

Images Based On RFONET,” Appl. Sci., Vol.9, No.10, pp.2028,

2019, http://dx.doi.org/10.3390/app9102028

[32] D. Scott, “Cognitive Flexibility,” In Theories of Learning and

Instruction,” 1st Ed., New York, NY: Springer, pp.151–182, 1993.

[33] B. B. Folajinmi, E. M. Eronu, S. J. Fanifosi, "Using Hybrid

Convolutional Neural Network and Random Forest (CNNRF)

Algorithms to Address Non-Technical Losses in Power

Distribution," World Academics Journal of Engineering Sciences,

Vol.12, Issue.1, pp.01-08, 2025

[34] M. Deepanshu, K. Srinivas, A. Charan Kumari, "Convolutional

Neural Network-Based Automated Acute Lymphoblastic

Leukaemia Detection and Stage Classification from Peripheral

Blood," International Journal of Scientific Research in Computer

Science and Engineering, Vol.12, Issue.3, pp.21-28, 2024

AUTHORS PROFILE

My name is Rotimi Philip Adebayo (R.

P. Adebayo). I hold a Bachelor's degree

in Computer Science and Mathematics

(2008), a Master's degree in Computer

Science (2013), and a second Master's in

Operations Research (2017). I am

currently pursuing a Master's degree in

Artificial Intelligence and will begin a

PhD program in September 2025 at the University of

Portsmouth, UK.

With over a decade of teaching experience, I specialize in

preparing students for standardized exams such as the

GMAT, GRE, SAT, IGCSE, and A-Level Mathematics. Since

2018, I have also been working as a Data Analyst with

Bluesilvers Consulting. I review articles, reports and

literature for clients and organizations.

In addition to my teaching and industry experience, I actively

contribute to academic research. I have published four papers

in top U.S. journals, and one of my recent works—

Explainable Artificial Intelligence (XAI) in Management and

Entrepreneurship: Exploring the Applications and

Implications—is currently under review. My project portfolio

includes machine learning applications for cancer diagnosis

and housing price prediction using Random Forest models,

among others.

https://doi.org/10.3390/App10196940
https://doi.org/10.48550/Arxiv.2002.08438
http://dx.doi.org/10.1088/1742-6596/1950/1/012020
https://doi.org/10.30630/Joiv.6.2-2.921
https://doi.org/10.1007/s13244-018-0639-9
https://doi.org/10.1016/j.apenergy.2023.122079
http://dx.doi.org/10.3390/app9102028

