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Abstract— Convolutional Neural Networks (CNN) have transformed the field of computer vision through their exceptional 

performance in image classification, face recognition, and object detection. Much of its success is due to the development of 

transfer learning, where pre-trained models trained on large datasets such as ImageNet are fine-tuned (adapted) for new tasks, 

even when only limited labeled data is available. Fine-tuning involves gradually unfreezing and retraining a pre-trained model to 

obtain optimal accuracy. However, determining the optimal number of layers to unfreeze remains a critical challenge. 

Unfreezing too few layers may limit the model's ability to adapt to task-specific features, leading to under-fitting, while fine-

tuning too many layers risks over-fitting, thereby compromising generalization on unseen data. This research aims to 

systematically determine the number of layers to fine-tune in a pre-trained CNN to achieve optimal performance. Grad-CAM 

and experimental approach, which involves fine-tuning ResNet152, EfficientNetB0, and VGG16 networks, are used. Findings 

show that unfreezing one-fifth (20% to 25%) of the top layers gives optimal performance and unfreezing too many layers leads 

to overfitting. However, the VGG16 network requires unfreezing the entire layers for optimal performance because of its few 

layers (18 layers). Future research can consider other pre-trained networks to ascertain the findings of this study. This research is 

significant to AI researchers, AI engineers, data analysts, and individuals who build AI systems. 
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1. Introduction 

Convolutional Neural Networks (CNNs) have transformed 

the field of computer vision through their exceptional 

performance in image recognition, semantic segmentation, 

object detection, and facial recognition [1]. These 

unimaginable achievements are made possible through the 

development of transfer learning, where a pre-trained model 

trained on a large dataset such as ImageNet, is retrained for 

new tasks with limited labeled data. Transfer learning 

improves the learning process by leveraging knowledge from 

previous tasks to inform the target task, thereby enhancing 

efficiency and enabling faster, more cost-effective solutions. 

[2]. Furthermore, transfer learning is most applicable when 

there is not enough data to build a machine-learning model 

[3]. Researchers can leverage pre-trained models and fine-

tune them to suit the constraints of a limited dataset. For 

instance, Huynh, Li, and Giger (2016) achieved good 

performance in the classification of mammographic tumors 

with just 607 digital mammographic images through transfer 

learning [4]. Also, Kermany et al (2018) utilized transfer 

learning to classify images for macular degeneration and 

diabetic retinopathy with limited data [5].  The approach not 

only accelerates model development but also enhances 

performance, especially in scenarios with constrained 

computational resources and data availability [6]. 
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Transfer learning typically involves unfreezing certain layers 

of a pre-trained model and fine-tuning them on task-specific 

data [3]. For instance, the last few layers of an EfficientNetB0 

model, a CNN model with 237 layers, can be fine-tuned 

(unfreeze) to update its weights in order to get acclimatized 

with the training dataset, to achieve better performance. 

However, determining the ideal number of layers to fine-tune 

remains a critical challenge [7]. Fine-tuning too few layers 

may limit the model's ability to adapt to task-specific features, 

leading to underfitting, while fine-tuning too many layers 

risks overfitting, thereby compromising generalization on 

unseen data. Currently, there is no established computational 

method to precisely determine or calculate the ideal number 

of layers for fine-tuning to achieve optimal performance. This 

process often involves iterative experimentation with 

different configurations of trainable layers to find the 

combination that yields the best results. 

This research focuses on systematically determining the 

number of layers in a pre-trained CNN architecture that needs 

to be fine-tuned to obtain optimal performance. The research 

will investigate the impact of varying the number of trainable 

layers during fine-tuning of transfer learning models, 

specifically leveraging the EfficientNetB0, ResNet152, and 

VGG16 architectures. The goal is to identify the 

configuration that maximizes both accuracy and validation 

accuracy on a benchmark dataset, thereby establishing 

guidelines for optimal model adaptation in practical 

applications. By integrating computational experiments and 

Gradient-weighted Class Activation Mapping (Grad-CAM) 

machine learning principles, this research intends to provide 

empirical insights into optimizing the number of trainable 

layers in transfer learning architectures for enhanced 

performance across diverse visual recognition tasks. 

1.1. Aims and objectives 

This study aims to accomplish the following objective: 

1. Assess how the number of trainable layers affects 

model performance: conduct empirical experiments 

to analyze how varying the number of trainable 

layers in transfer learning networks such as 

EfficientNetB0, ResNet152, and VGG16 

architecture affects both accuracy and validation 

accuracy. Besides, the research aims to measure 

performance metrics across a benchmark dataset to 

quantify the influence of different layer 

configurations on model adaptability and 

generalization. 

2. Establish guidelines for optimal fine-tuning: identify 

and document configurations of trainable layers that 

consistently yield optimal performance. 

3. Derive insights from experimental and Grad-CAM 

analysis to define guidelines that inform scientists on 

selecting the appropriate number of layers for fine-

tuning to obtain optimal training and validation 

accuracies. 

 

2. Related Work  

Training transfer learning models involve fine-tuning to 

obtain better performance. A critical decision in transfer 

learning involves selecting the number of layers to fine-tune 

(unfreeze) in the pre-trained model. This decision can 

significantly impact training accuracy, validation accuracy, 

and computational efficiency. This literature review examines 

several studies to determine the optimal number of layers to 

unfreeze to obtain the best accuracy. Recent studies consider 

fine-tuning under three sub-categories: fine-tuning 

approaches, evaluation of multiple pre-trained CNNs, and the 

impacts of fine-tuning depth on model performance.  

2.1. Fine-Tuning Approaches 

The fine-tuning approach has been very effective in 

improving the performance of pre-trained models. Several 

studies have investigated different approaches to determine 

the range of layers to unfreeze to maximize the accuracy of a 

pre-trained network. While the experimental approach is the 

most common [8], [9], [13], Vrbančič and Podgorelec (2020) 

employed the Differential Evolution-based Fine-Tuning 

(DEFT) method for determining the range of layers to 

unfreeze for identifying osteosarcoma from a medical 

imaging dataset [12]. This method was evaluated for 

osteosarcoma detection from medical images and compared 

with a conventionally trained CNN, a pre-trained model, and 

a fine-tuned model with manually selected layers. DEFT 

outperformed the other methods by margins ranging from 

4.45% to 32.75% in classification accuracy. 

Houlsby et al. (2020) introduced transfer learning with 

adapter modules, a compact and extensible approach that 

adds only a few trainable parameters per task while keeping 

the original network fixed [11]. This method enables the 

addition of new tasks without retraining previous ones, 

enabling extensive parameter sharing. Demonstrating this, 

adapter modules were used to transfer the BERT Transformer 

model to 26 diverse text classification tasks, including the 

GLUE benchmark. The adapters achieved near state-of-the-

art performance within 0.4% of full fine-tuning on GLUE, 

while adding only 3.6% parameters per task, compared to 

100% for full fine-tuning. 

Masyitah et al. (2022) examined the performance of pre-

trained CNN models (VGG-Net, MobileNet, ResNet, and 

DenseNet) in classifying visual field (VF) defects [2]. Their 

approach involved fine-tuning and hyperparameter tuning 

with a batch size of 32, 50 training epochs, and the ADAM 

optimizer. Findings show that VGG-16 achieved 97.63% 

accuracy. Bayesian optimization was employed for automated 

hyperparameter tuning and fine-tuning. DenseNet-121 model 

obtained an accuracy of 98.46% validation accuracy and 

99.57% test accuracy, respectively. 

2.2. Empirical Evaluation of Multiple Pre-trained 

Architectures 

While the pre-trained model is widely used in medical 

imaging classification, their performance varies significantly 
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due to the fine-tuning strategy employed and the specific 

medical imaging domain, such as X-ray, MRI, Histology, 

Dermoscopy, and Endoscopic surgery. A few studies 

compared different CNN architectures across varying fine-

tuning settings to identify architecture-specific behavior. 

Davila, Colan, and Hasegawa (2024) investigated the 

challenges of optimizing fine-tuning methods for pre-trained 

models in medical image analysis [29]. Eight fine-tuning 

approaches were employed with three pre-trained models: 

ResNet-50, DenseNet-121, and VGG-19. They found that the 

performance of the fine-tuning approach depends largely on 

the CNN architecture and the types of images. DenseNet-121 

performed better than the traditional fine-tuning approach.  

Kumar, Anuar, and Hassan (2022) investigated the 

performance of various pre-trained models (SqueezeNet, 

GoogleNet, ShuffleNet, Darknet-53, and Inception-V3) 

across different epochs, learning rates, and mini-batch sizes 

[10]. Using confusion matrices for evaluation, the 

experiments showed that Inception-V3 achieved the highest 

accuracy of 96.98%, along with precision of 92.63%, 

sensitivity of 92.46%, specificity of 98.12%, and an F1-score 

of 92.49%. 

2.3. Impact of Fine-Tuning Depth on Model Performance 

These studies explicitly examine how the number or depth of 

fine-tuned layers affects performance metrics such as 

accuracy, overfitting, and generalization. Karlsson and 

Runelöv (2021) researched a pre-trained AlexNet architecture 

and adopted fine-tuning to train the network to diagnose lung 

diseases from chest X-rays [8]. They investigated how deeply 

to fine-tune the architecture to achieve the best accuracy, 

sensitivity, and specificity. The network was divided into five 

blocks, resulting in five different fine-tuning depths. 

Although all models produced promising results, they failed 

to learn the intended features. Instead, the models resorted to 

shortcut learning by identifying the image origin rather than 

differences in the lungs. Consequently, the research question 

of this thesis remains unresolved. 

The study done by Gupta and Gupta (2020) partly resolves 

the inconclusive result of Karlsson and Runelöv (2021). They 

studied the effects of fine-tuning a pre-trained image 

classification model on the accuracy of binary classification 

tasks [9]. Retraining the VGG-16 model with 640 medical 

images and 65 testing images over 100 epochs, they found 

that unfreezing the lower layers initially improved validation 

accuracy, followed by a decline.  

Kandel and Castelli (2020) conducted experiments on two 

histopathology datasets using three state-of-the-art 

architectures to study the effect of block-wise fine-tuning of 

CNNs [1]. They found that fine-tuning the entire network 

does not result in the best validation accuracy, but, leads to 

overfitting and requires more computational resources during 

training. For shallow networks, in particular, fine-tuning only 

the top blocks can save time and computational resources 

while producing more robust classifiers. 

Ki-Sun Lee et al (2020) investigated the impacts of fine-

tuning different numbers of convolutional blocks in VGG-16 

and VGG-19 architectures for COVID-19 detection using 

chest X-ray images [13]. They found that fine-tuning up to 

three convolutional blocks improves accuracy while fine-

tuning beyond three blocks decreases accuracy. Furthermore, 

the study by Amiri, Brooks, and Rivaz (2020) investigated 

the effects of fine-tuning different parts of the U-Net 

architecture for breast ultrasound image segmentation [14]. 

Their findings align with those of Ki-Sun Lee et al. (2020) 

which revealed fine-tuning the encoder part, while keeping 

the decoder part of the U-Net frozen, resulted in better 

segmentation performance. Also, including more layers from 

shallow to deep during fine-tuning led to improved results.  

Taormina et al. (2020) investigated the impact of fine-tuning 

various layers of convolutional neural networks (CNNs), with 

a focus on AlexNet, for the classification of HEp-2 cell 

images [15]. Their study also included a comparative analysis 

of four widely used pre-trained models: AlexNet, 

SqueezeNet, ResNet18, and GoogLeNet. Using a public 

dataset, the models were evaluated based on accuracy and the 

area under the Receiver Operating Characteristic (ROC) 

curve (AUC). The findings highlighted the advantage of 

selective fine-tuning (retaining the early layers for general 

feature extraction while adapting the deeper layers to the 

specific classification task), demonstrating improved 

performance through task-specific layer adjustment. 

Adepoju et al (2024) investigated how fine-tuning different 

layers of pre-trained models impacts classification 

performance, particularly in high-precision tasks such as 

medical diagnosis [30]. They used InceptionV3 and Xception 

architectures to classify breast cancer from mammographic 

images. Systematic fine-tuning approaches were employed to 

assess performance across varying layers and findings show 

that InceptionV3 achieved slightly better performance (0.65) 

than Xception (0.64) without fine-tuning. Accuracy increased 

to 0.66 when the last two block layers were fine-tuned and 

decreased to 0.61 upon fine-tuning all the layers.  

2.4. Gaps in the literature 

Despite the numerous studies on exploring the number of 

optimal layers to fine-tune in transfer learning, more studies 

are necessary to justify the range of layers to unfreeze in a 

pre-trained architecture to obtain optimal performance. The 

studies asserted that fine-tuning layers requires a balanced 

approach to prevent underfitting and overfitting the model. 

Many studies adopted various pre-trained models, fine-tuning 

strategies, and datasets to answer these research questions. 

However, the studies reveal varying findings. For instance, 

while some research supports shallow fine-tuning to avoid 

overfitting and reduce computational costs, others suggest 

that deeper fine-tuning can improve performance depending 

on the task. This inconsistency makes it challenging to draw 

an approximate conclusion on how deep to fine-tune across 

different domains or model architectures. 

Even with the inconsistencies, much of the literature supports 

unfreezing the top few layers. However, more studies are 
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required to support this assertion and to provide an acceptable 

guideline on the number of layers to unfreeze to consistently 

achieve optimal performance.  

Lastly, there is limited research that integrates explainable AI 

tools such as Grad-CAM to analyze and interpret the impact 

of fine-tuning depth on model decision-making and feature 

extraction. While performance metrics such as accuracy and 

AUC are frequently used, they do not provide insight into 

why a particular fine-tuning configuration performs better. 

Few studies combine quantitative results with visual 

explanations to guide the selection of trainable layers. This 

creates a gap in practical, interpretable methodologies that 

can inform scientists not only on what layers to fine-tune but 

also on why those layers contribute to improved training and 

validation performance. 

The table below summarizes the literature review and their corresponding findings 
Table 1 summarizes the literature review 

Author(s) Problem definition Methodology Findings 

Vrbančič & 

Podgorelec (2020) 

[12] 

Determine optimal layers to unfreeze 

for medical image classification 

(osteosarcoma). 

Differential Evolution-

based Fine-Tuning (DEFT); 

compared with manual 

fine-tuning and 

conventional training. 

DEFT outperformed others by 4.45%–

32.75% in accuracy. 

Houlsby et al. (2020) 

[11] 

 

Proposed transfer learning with 

adapter modules Reduce resource cost 

of transfer learning while maintaining 

performance. 

Adapter modules added to 

BERT; tested on 26 NLP 

tasks including GLUE 

benchmark. 

Achieved 0.4% less than full fine-tuning 

with only 3.6% extra parameters vs 

100%. 

Masyitah et al. 

(2022) [2] 

 

Classify visual field defects using pre-

trained CNNs. 

Fine-tuned VGG, 

MobileNet, ResNet, 

DenseNet; hyperparameter 

tuning with Bayesian 

optimization. 

DenseNet-121 achieved 98.46% (val) and 

99.57% (test) accuracy. 

Davila, Colan & 

Hasegawa (2024) 

[29] 

Compare fine-tuning strategies across 

architectures for medical imaging. 

Used 8 fine-tuning 

strategies on ResNet-50, 

DenseNet-121, VGG-19. 

DenseNet-121 outperformed other 

strategies; performance is architecture- 

and image-type-dependent. 

Kumar, Anuar & 

Hassan (2022) [10] 

Evaluate various pre-trained models 

across hyperparameter configurations. 

Tested SqueezeNet, 

GoogleNet, ShuffleNet, 

etc., with varied learning 

rates, epochs. 

Inception-V3 performed best: 96.98% 

accuracy, high F1-score and specificity. 

Karlsson & Runelöv 

(2021) [8] 

Determine fine-tuning depth for lung 

disease classification. 

Fine-tuned AlexNet at 5 

different block depths on 

chest X-rays. 

Models used shortcut learning; failed to 

learn medical features. 

Gupta & Gupta 

(2020) [9] 

Examine how fine-tuning depth 

affects binary classification. 

Fine-tuned VGG-16 using 

640 train / 65 test images 

over 100 epochs. 

Validation accuracy improved then 

declined with deeper unfreezing. 

Kandel & Castelli 

(2020) [1] 

Study block-wise fine-tuning on 

histopathology datasets. 

Used 3 CNNs on 2 datasets; 

tested full vs partial fine-

tuning. 

Full fine-tuning led to overfitting; tuning 

top blocks was more efficient. 

Ki-Sun Lee et al. 

(2020) [13] 

Optimize fine-tuning depth in VGG-

16/19 for COVID-19 detection. 

Fine-tuned 1–5 blocks on 

chest X-rays. 

Accuracy improved up to 3 blocks; 

decreased beyond that. 

Amiri, Brooks & 

Rivaz (2020) [15] 

Analyze effect of encoder vs decoder 

tuning in U-Net. 

Partial fine-tuning on U-

Net for breast ultrasound 

segmentation. 

Encoder-only tuning improved 

segmentation results. 

Taormina et al. 

(2020) [14] 

Understand selective fine-tuning for 

HEp-2 cell image classification. 

Compared AlexNet, 

SqueezeNet, ResNet18, 

GoogLeNet; varied fine-

tuning layers. 

Selective tuning of deeper layers 

improved performance (accuracy, AUC). 

Adepoju et al. (2024) 

[30] 

Investigate impact of layer-specific 

fine-tuning in cancer diagnosis. 

Used InceptionV3 & 

Xception; systematically 

fine-tuned layers. 

Accuracy rose from 0.65 to 0.66 (last 2 

blocks), fell to 0.61 (full fine-tuning). 

 

3. Fine-tuning in Transfer Learning 

To understand fine-tuning and the processes involved in fine-

tuning a transfer learning network, the CNN must be clearly 

understood. We define fine-tuning as the process of taking a 

pretrained model (that is, a model that has learned useful 

features from a large dataset) and adapting the model to learn 

another often related task-specific dataset [7]. For instance, 

the Efficient.Net series was trained on the ImageNet-1k 

dataset of cats. However, we can use the same model to 

classify medical images with few datasets. This is highly 

significant in model development as it allows researchers to 

leverage existing solutions to solve other related problems.  
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According to Karlsson and Runelöv (2021), transfer learning 

involves using existing knowledge to solve related tasks [8]. 

This is how the human brain solves problems. The human 

brain has learned from experiences over the years. At a time 

when people are required to make concrete decisions, the 

brain transfers the knowledge it has obtained from previous 

experiences to learn the pending situation [16]. This enables 

the brain to make informed decisions by drawing on prior 

knowledge and experience. In the same vein, transfer learning 

is based on the idea that knowledge gained from large data 

can be transferred to solve other related problems.  

3.1. Cognitive Process of Fine-Tuning: Human Brain       

Analogy 

The brain adapts and refines previously learned knowledge to 

learn new tasks through the process of refinement [16]. 

Drawing on cognitive science and neuroscience, the human 

brain learns by a dynamic interaction between prior 

knowledge (existing mental schemas) and new situations. 

According to the Cognitive Science Insight, Schema theory 

(Bartlett, 1932) suggests that the brain stores generalized 

information that helps in understanding new situations [17]. 

This process involves making small modifications to existing 

schemas or forming new sub-schemas that are more specific 

to the new context [17]. Carey (1991) argued that the concept 

of fine-tuning is similar to the conceptual change, where 

existing knowledge is modified [18]. Neuroplasticity (Hebb, 

1949) also supports the idea that the brain can readjust or 

reorganize to adapt its neural connections, reinforcing useful 

patterns while discarding irrelevant or outdated ones [19]. 

Hatano and Inagaki (1986) supported the argument implying 

that the transfer process is akin to adaptive expertise, where 

individuals modify their approach and methodologies as they 

gain more expertise, revealing that the prefrontal cortex and 

hippocampus are involved in human memory management 

and long-term memory integration [20]. 

 
Figure 1 shows fine-tuning processes in the brain [16] 

Figure 1 above explain the processes involved in knowledge 

refinement of the brain. The brain readjusts or refines existing 

knowledge to solve present situations [32].  

3.2. CNN architecture 

Since this research adopt image dataset, it is necessary to 

explain the CNN architecture to demonstrate the fine-tuning 

processes. There are so many CNN models that have been 

developed over the years. However, they almost follow 

similar architecture even though some architecture may differ 

slightly from others.  

 
Figure 2 shows the CNN architecture  

3.2.1.      Input layer  

The input layer of a CNN is the first layer that receives the 

raw image data for processing. It accepts images with specific 

characteristics, such as dimensions and channels. The 

dimension of the image is its size in pixels (height x width), 

while the channel indicates a colored image [Red, Green, 

Blue]. For instance, EfficientNetB0, a pre-trained CNN 

architecture, accepts images of dimensions [224 x 224 x 3]. 

224 by 224 represents the height and width of the image, 

while 3 indicates the channels. Grey images are represented 

by [height x width x 1], which indicates that grey images 

require a single channel to indicate the intensity of the pixels.  

3.2.2.      Pre-trained Base Model (Frozen weights) 

The next layer of the CNN network from Figure 2 is the 

pretrained layer. The pretrained model is also called the base 

model, and it has several sub-layers, which are frozen. The 
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pre-trained base model refers to the part of the architecture 

that has been pre-trained on a large dataset like ImageNet. 

Before fine-tuning, the base layers are frozen, enabling the 

architecture to maintain the features of the model trained with 

ImageNet. During training, the weights of the base model are 

kept constant (not updated), allowing the model to make 

predictions on a new dataset with the features of the trained 

model on ImageNet. Training the base model (with frozen 

layers) with new datasets offers several advantages, one of 

which is the ability to train effectively with a small image 

dataset [12]. Second, the trained model can leverage the 

feature extraction capabilities of the base model [12]. Third, 

when the base model is kept frozen, the model is only trained 

with the custom layer. This improves the speed of training 

and also reduces the likelihood of overfitting [12].  

The pretrained base model, as shown in Figure 2, has four 

layers: convolutional layers, batch normalization layers, 

activation layers, and pooling layers, though the arrangement 

of the layers can vary slightly in different CNN architectures 

like EfficientNetB0 and VGG16 architectures.  

I. Convolutional layers  

The convolution layer is one of the most significant layers of 

the CNN architecture. Its function is to extract features from 

the images [21]. Convolution is a process of extracting 

features from the input images and it does this by computing 

the dot products of the image matrix with the kernel matrix as 

shown in Figure 3.  

 

Figure 3 shows the convolution process [21] 

The kernel is a 3x3 matrix, and it is used to multiply the 

image matrix to produce an activation map (convoluted 

output). The process performs a dot product, which is added 

to produce the activation map, as shown. This procedure is 

carried out for each of the image matrices. The stride allows 

the kernel matrix to move over the image matrix. A stride set 

as 1 means that the kernel moves over the image matrix one 

to the left, right, up, and down to calculate the convoluted 

output. Increasing the dimension of the kernel to 5x5 or 7x7 

and the stride to 2 or more affects the depth of the features 

extracted negatively (more detailed features will be extracted 

when the kernel matrix and the stride are smaller), though the 

convolution process will be faster [22].  

II. Batch normalization  

To simplify batch normalization, it is necessary to consider 

each word separately. Normalization is a technique in 

machine learning that entails converting the pixel values of an 

image to a standard range, typically between 0 and 1 or -1 

and 1. The essence of normalization is to enhance the 

convergence speed and stability of training algorithms [22]. It 

also ensures that the numeric input values of the images are 

uniform, mitigating gradient vanishing or explosion problems 

during the training phase [22]. This preprocessing step is 

particularly significant when using activation functions such 

as sigmoid or hyperbolic tangent (tanh), as they are sensitive 

to the input data scale. 

The study done by Norhikmah, Afdhal, and Rumini (2022) 

reaffirms that normalization enhances overall performance 

and improves the training process [23]. They attributed the 

improved performance to the reduction in numerical 

instability and the promotion of faster gradient descent 

convergence. Krizhevsky, Sutskever, and Hinton (2012) 

found that normalization prevents CNNs from using a wide 

range of numerical data, thus promoting the model's ability to 

generalize across various datasets [22]. Normalization 

techniques include min-max normalization, which scales the 

pixel values within a specified minimum and maximum 

range, and z-score normalization, which scales the numeric 

values based on the mean and standard deviation of the 

dataset.  

To simplify, the image dataset in EfficientNetB0 has a 

dimension of 225 x 225 pixels. In other words, each pixel in 

the dataset is within the range of 0 to 225. This dataset will 

not scale properly within this range during training, thus, a 

need for normalization [25]. Normalization is done by 

dividing the data by 225 to convert the data to within 0 and 1 

[27]. For batch normalization, the data are converted to 

within 0 and 1 after the convolutional process. However, this 

process is done in a batch of 32 and not a single input.  

III. Pooling layer  

The pooling layer is a significant component of the CNN, 

which is used primarily for down sampling (reducing) the 

activation map (feature map) created by the convolution layer 

[24]. The essence is to focus on the most important features 

while reducing the image size. Imagine you have the image of 

a cat, and you want to shrink it, but you don’t want to lose the 

most important part, which is the eyes, edges, and shapes. 

Pooling operations work by sliding a window across the input 

feature map and summarizing the most important features 

within that window [25]. There are several types of pooling 

layers but the most common are max pooling and average 

pooling. While max pooling selects the maximum values 

from the window, capturing the most important features, the 

average pooling calculates the average values, providing a 

more generalized representation of the features. 

Figure 4 below shows the pooling process. Here, the pooling 

process selects the maximum number of the feature map.  
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Figure 4 shows the max pooling process of a CNN [25] 

Max pooling is widely used in CNNs due to its ability to 

retain the most important features while discarding less 

relevant information. For example, if a feature is highly 

activated within a certain region of the input image, max 

pooling will ensure that this activation is preserved in the 

down sampled output. This process reduces the spatial size of 

the feature maps and also helps to make the network more 

invariant to small translations and distortions in the input 

data. As a result, pooling layers play a crucial role in 

enhancing the robustness and efficiency of CNNs by enabling 

the network to focus on the most critical features and 

reducing the computational burden associated with large 

input dimensions [25]. 

Here's a detailed breakdown of the formula: 

𝑂𝑢𝑡𝑝𝑢𝑡(𝑖, 𝑗) = 𝑚𝑎𝑥(𝑚,𝑛)∈𝑤𝑖𝑛𝑑𝑜𝑤(𝑖,𝑗)𝐼𝑛𝑝𝑢𝑡(𝑚, 𝑛) -------- (1) 

Output (𝑖, 𝑗): The value of the pooled output at position (𝑖, 𝑗) 

Input (𝑚, 𝑛): The value of the input feature map at position 

(𝑚, 𝑛) within the window. 

Window (𝑖, 𝑗): The window of size (e.g., 2x2, 3x3) that is 

applied at position (𝑖, 𝑗) on the input feature map. 

Max: The max function, which selects the maximum value 

within the window. 

3.2.3.      The Custom Head Classification 

The custom head is the third part of the transfer learning 

network. It represents the fully connected layer. The earlier 

layers (convolutional, normalization, and pooling layers) scan 

the images, spot edges, textures, and shapes, and transform 

the images into a list of features. The head classification 

looks at the features (numbers) and decides which images 

they are. If we have the images of dogs, cats, and rabbits at 

the input layers, the CNN learns from training data and 

classifies the test data into their corresponding image 

categories [33].  

How does it work? After the features are flattened in the 

flatten layer into 1 1-dimensional vector, the fully connected 

layer processes this vector by applying a linear transformation 

followed by a non-linear transformation function. The 

transformation enables the network to learn complex 

representations and relationships, guiding the network to 

classify the input data more accurately. Typically, the fully 

connected layer is positioned at the end of the network. and is 

responsible for producing the final output, such as class 

scores in classification tasks [28]. The head classification 

layer can be customized. The researcher can decide the 

number of fully-connected layers, use dropout/batch-norm for 

regularization, the number of labels, and the activation 

function, which could be Softmax for single-label 

classification or Sigmoid for multi-label classification [34].  

The table below summarizes some terms in the CNN sample architecture which are not preciously explained.  
Table 2 shows some terminologies used in CNN network 

             Layers  Parameters  Meaning  

1 Input layer   The input layer accept the images in dimension [225 x 225 x 3], where [225 x 225] represent the 

image dimensions and the 3 represent the image channel [Red, Blue, and Green] 

2 Conv2D (3x3, 

stride 2) 

Con2D Represent a two-dimensional convolution. This means that the input is a 2-dimensional shape. 

Images has the height by weight, while videos are in 3 dimensions  

3 x 3  Kernel size (as shown in Figure 2). Height x width 

Stride 2  Enables the kernel (3x3 matrix) to move 2 pixels at a time through the feature map. This is meant 

for feature extraction from each image. 

padding Necessary to preserve the kernel from falling off the feature image (preserve spatial dimension) 

3 BatchNorm  The batch normalization reduces the internal covariate shift (i.e. adjust the out of the activation 

map into values between 0 and 1), speed up convergence, and reduce overfitting.  

4 Swish Activation  An activation function introduced by Google in 2017. It outperforms ReLU in deep networks 

(~0.5 – 1% improvement) and improves smooth gradients  

3.4. Fine-Tuning (Unfreezing) the CNN Layers 

Having understood the CNN network, we can unfreeze nearly 

all the layers in the transfer learning network though such act 

is not advisable because training all layers do not amount to 

better accuracy. Besides, the more the number of layer 

unfrozen, the more the computational resources required. 

There is no definitive method for determining the optimal 

number of layers to fine-tune in a transfer learning network to 

achieve maximum accuracy. This is the challenge that this 

study aims to unravel.  
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4. Methodology 

In this study, systematic and empirical approach are used to 

obtain the optimal number of layers to unfreeze. The steps 

taken are summarized below: 

1. Collect the image datasets  

2. Set up the experiments 

3. Training and fine-tune Efficient|NetB0, ResNet152, 

and VGG16 

4. Plot the graph and use regression to find the equation 

5. Use the Grad-CAM method to also determine the 

range of layers to fine-tune to obtain optimal 

accuracy 

4.1. Prepare Your Data 

More than one dataset is used in the experiment. The essence 

is to have a variety of outcomes. Split your dataset into 

training, validation, and test sets. Ensure your data is properly 

preprocessed and augmented if necessary. 

I. Food-101 dataset 

The Food-101 dataset is a large-scale collection of food 

images categorized into 101 classes, each representing a 

different type of food. The dataset contains 101,000 images, 

with 1,000 images per class. 75% of the dataset make up the 

training data, while 25% make up the test data. 10% of the 

Food-101 dataset is used for the experiments to enhance 

faster processing times and reduce computational 

requirements. It also allows for quicker iterations and 

experimentation cycles. 10% of the Food-101 dataset amount 

to 10,100 images, 75% of whose is used for training and 25% 

for testing.  

 

Figure 6 shows the Food-101 dataset 

II. CIFAR-10 dataset 

The CIFAR-10 dataset consists of 60,000 labeled images 

divided into 10 classes: airplane, automobile, bird, cat, deer, 

dog, frog, horse, ship, and truck. Each class contains 6,000 

images. The dataset was created by Alex Krizhevsky, Vinod 

Nair, and Geoffrey Hinton. The images are split into 50,000 

for training and 10,000 for testing. 

 
Figure 7 shows the CIFAR-10 dataset 

III. Stanford Dogs Dataset 

The Stanford Dogs dataset is a well-known dataset for fine-

grained image classification, specifically focused on different 

breeds of dogs. The dataset has 20,580 images with 12,000 

training images and 8,580 test images. It has a class of 120 

different breeds of dog and each class has 120 images of the 

same type of dog. The images generally vary in resolution, 

often ranging from around 200x200 pixels to more than 

500x500 pixels, and many images are larger than this range, 

often going up to 1024x1024 pixels or higher. Given the 

high-resolution nature of the images, the dataset is well-suited 

for tasks that require capturing fine details and textures, 

which is important for fine-grained classification tasks like 

distinguishing between different breeds of dogs. 

 
Figure 8 shows the Stanford Dogs dataset 

4.1.1. Reasons for different dataset 

Training machine learning models with a wide variety of data 

types is crucial for improving their robustness and 

generalization capabilities, which helps the model to perform 

better on real-world tasks where input data can be highly 

variable and unpredictable [11]. By training with different 

data types, models can also handle noise and variability more 

effectively, leading to improved performance across various 

applications [29]. 

Besides, training a machine learning model with a wide 

variety of data types helps prevent over-fitting, where a 

model becomes accustomed to the training dataset, but 

performs badly in the testing dataset. In other words, when 

models are trained on a homogeneous dataset, they may fail 

to generalize to new and unseen data that differ from the 

training dataset. By integrating multiple data types, the model 

gains a deeper understanding of the underlying relationships 

within the data, leading to improved generalization and more 

accurate predictions. This approach is particularly beneficial 

in complex tasks, such as multi-modal learning and real-
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world applications, where data is rarely uniform and often 

comes from multiple sources. 

4.2. Set up Baseline Experiment 
The experimental approach involves unfreezing layers by 

layers and training the architecture to determine the accuracy 

of each. In fact, most methods, such as statistical, 

computation, etc., rely on the experimental approach to obtain 

the optimal solutions. The experimental approach has the 

following steps, which are discussed in detail:  

1. After obtaining the data, prepare the environment. It 

could be Anaconda Notebook, Python IDE, Google 

Colab, Visual Studio, or any other platform where 

Python code can be written. 

2. Import the data and create the code for any of the 

transfer learning CNN networks (EfficientNet, 

ResNet16, ResNet101, Inception, etc.) 

3. Run the base model and display results.  

4. Incremental Fine-Tuning Approach: Gradually 

unfreeze more layers from the pre-trained model and 

fine-tune them. For each configuration, keep other 

hyperparameters constant. The steps are as follows: 

 Fine-Tune Top Layers: Start by unfreezing only 

the top few layers of the pre-trained model and 

train the network. Record the performance on 

the validation set. 

 Increase Fine-Tuning Depth: Incrementally 

unfreeze additional layers (e.g., unfreeze the 

next block of layers) and repeat the training 

process. 

 Monitor Performance: At each fine-tuning level, 

evaluate the model’s performance on the 

validation set to assess how the depth of fine-

tuning influences overall effectiveness. 

4.3. Grad-CAM Approach 

Machine learning models especially neural network, which 

has been successful in solving most dynamic human problem 

is not interpretable. In other words, managers and 

organizations find it challenging to explore AI in critical 

situations as they lack trust in the system due to its 

unexplainable decision-making processes [26]. However, 

Grad-CAM has been useful in the interpretability of complex 

neural network [27]. In this research, we utilize Grad-CAM 

as one of the techniques to help identify the optimal number 

of layers to fine-tune in order to achieve the best validation 

accuracy. 

4.3.1. How does it work? 

Grad-CAM helps to identify the most important features of an 

image learned by machine learning models. Grad-CAM 

identifies the regions of an image that are most influential in a 

convolutional neural network's final decision by highlighting 

the areas with the highest impact on the output prediction 

[27]. This is done by indicating the importance of each pixel 

in relation to the class by increasing or decreasing the 

intensity of the pixel [28]. For instance, if a Grad-CAM 

visualization is used to generate the image of a cat, the Grad-

CAM can indicate the extent to which different parts of the 

pixels of the image correspond to a cat.  

The class activation map (CAM) reveals the most significant 

parts of the image used for model prediction. It does this by 

combining the values from the last convolutional layer, using 

weights linked to the class the model predicted [29]. The 

result is a heatmap that highlights key areas the model 

focused on. This heatmap is then resized to match the original 

image size so we can see exactly what the model was looking 
at [30]. 

5. Result and Discussion 

5.1. Results of the experimental method 

Three categories of experiments were done: ResNet152 

model with cifar10 dataset, VGG16 with Stanford dogs 

dataset, EfficientNetB0 model with Food-101 dataset,  

ResNet152 experimental results with cifar10 dataset 

The ResNet152 has 152 block layers but 514 layers. Table 3 

below shows the result of the fine-tuning experiments over 5 

epochs 

Table 3 shows the outcome of the ResNet152 experiment 

Model  
Layers 

Unfreeze 
Accuracy  Loss 

Val-

accuracy 
Val-Loss 

Base 

Model 
0 0.2961 1.9466 0.2966 1.9569 

1 207 0.5345 1.3091 0.5236 1.4021 

2 310 0.3714 1.6755 0.3616 1.7522 

3 180 0.5108 1.3929 0.5022 1.4012 

4 100 0.4834 1.4553 0.4735 1.4756 

5 20 0.4422 1.5742 0.4389 1.6109 

6 230 0.3914 1.6773 0.3767 1.7843 

7 210 0.5259 1.3491 0.5201 1.3569 

8  10 0.4407 1.5885 0.3879 1.8210 

ii. Fine-tuning the VGG16 with Stanford dogs 

dataset 

The VGG16 has 18 layers. The table below shows the result 

of the fine-tuning experiments over 10 epochs 

Table 4 shows the outcome of the VGG16 experiment 

Model  
Layers 

Unfreeze 

Accura

cy 
Loss 

Val-

accuracy 

Val-loss 

function 

Base 

Model 
0 0.7516 0.7041 0.6217 1.1544 

1 18 0.9699 0.0918 0.8373 0.6029 

2 10 0.9568 0.1308 0.8136 0.6844 

3 14 0.9619 0.1118 0.8361 0.5994 

4 17 0.9647 0.1049 0.8315 0.6264 

iii. Fine-tuning the EfficientNetB0 with 10% of the 

Food-101 database 



Int. J. Sci. Res. in Computer Science and Engineering                                                                             Vol.13, Issue.3, Jun. 2025   

© 2025, IJSRCSE All Rights Reserved                                                                                                                                           57 

The EfficientNetB0 has 237 layers. Table 5 shows the result 

of fine-tuning experiments over 5 epochs. 

Table 5 shows the outcome of the EfficientNetB0 experiments 
Model  Layers  Accuracy Loss Val_acc Val_loss 

Base 

Model 
0 0.7278 1.1670 0.6243 1.4512 

1 10 0.8797 0.5386 0.6635 1.2512 

2 20 0.9040 0.4217 0.6662 1.2842 

3 50 0.9380 0.2741 0.6642 1.3458 

4 150 0.9315 0.2508 0.6491 1.4981 

5 237 0.8879 0.4007 0.5867 1.7758 

6 100 0.9494 0.2024 0.6452 1.5234 

7 120 0.9378 0.2304 0.6352 1.5477 

 

5.2. Interpreting the Experiments Using Graphical 

Method 

Tables 3, 4, and 5 shows the outcome of the experiments. 

Based on these results, a key question arises: Can we identify 

a specific layer or a range of layers to fine-tune in order to 

achieve the best possible validation accuracy? To explore this 

question further, plotting a graph of the experimental results 

can help visualize the relationship between the layers fine-

tuned and the validation accuracy. This graphical 

representation will provide insights that may help answer the 

research question more clearly. 

5.2.1. Interpreting the ResNet152 results 

The graphs in Figure 9 and 10 shows the validation accuracy 

and the validation of the ResNet152 experiments 

Figure 9 shows the validation accuracy against the unfrozen layer for the 

ResNet152 experiments 

Figure 10 shows the validation loss against the unfrozen layer for the 

ResNet152 experiments 

The curve is a ∩-shape, which confirms a quadratic 

polynomial of the form: 

Val-Accuracy = −𝑎𝐿2 + 𝑏𝐿 + 𝑐 -------------- (1) 

Where: 

 L = number of unfrozen layers, 

 The maximum point (vertex) seems to be somewhere 

around 150 layers. 

From visual estimation: 

 At 0 layers, accuracy ≈ 0.35 

 At ~150 layers, accuracy peaks at ≈ 0.51 

 At 310 layers, accuracy dips to ≈ 0.34 

Using regression, this graph supports the equation:  

Val-Accuracy ≈−0.00000673𝐿2 + 0.001554𝐿 + 0.35 ------

----------------- (2) 

(Check appendix I for how the equation is obtained) 

The validation loss is a concave parabola with equation Val-

Accuracy = 𝑎𝐿2 + 𝑏𝐿 + 𝑐 ------------------ (3) 

Loss starts high at ~1.85, reach the minimum at ~1.42 around 

150 layers, then rise again. 

Supports earlier regression: 

Val-Loss ≈ 0.000017𝐿2 − 0.0054𝐿 + 1.85 ------------ (4) 

 

Metrics  

The Mean Square Error (MSE) and Mean Absolute Error 

(MAE) is used to determine the acceptance of the results. 

Substituting the layers into the Val-accuracy equation 

 −0.00000673𝐿2 + 0.001554𝐿 + 0.35, we obtain the table 

below:  

 
Table 6 shows the actual and predicted val-accuracy of ResNet152 

Layers Actual Val-accuracy  Predicted Val-

accuracy 

0 0.2966 0.35 

10 0.3879 0.3649 

20 0.4389 0.3784 

100 0.4735 0.4381 

180 0.5022 0.4117 

207 0.5236 0.3833 

210 0.5201 0.3796 

230 0.3767 0.3514 

310 0.3616 0.1850 

 

The actual Val-accuracy is obtained from the experimental 

results in Table 3. The MSE is calculated using the formula: , 

while the MAE is obtain using the formula: 

The Mean Squared Error (MSE) is 0.00975 and the Mean 

Absolute Error (MAE) is 0.0828. A low MSE and MAE 

indicates that the polynomial regression model performs 

excellently well. A MAE of 0.0828 means that on average, 

the predicted values are only about 8.28% different from the 

actual values. A low MSE also confirms the model’s good 
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performance, especially since MSE gives more weight to 

larger errors.  

To determine the number of layer that gives the optimal 

solution, we substitute the layers from 0 to 514 into the Val-

accuracy equation. The easiest way to do this is a run a 

Python code with input [0, 1, 2... 514] and obtain the 

corresponding Val-accuracy.  Note, ResNet152 has 514 

layers. The outcome shows that the optimum accuracy is 

obtained at layer 107 at Val-accuracy of 0.439706. Fine-

tuning the top 107 layers is 22% of the 514 layers of the 

ResNet152.  

 

5.2.2. Interpreting the EfficientNetB0 results 

Figure 11 shows the validation accuracy against the unfrozen layer for the 
EfficientNetB0 experiments 

Figure 12 shows the validation loss against the unfrozen layer for the 

EfficientNetB0 experiments 

This is a convex (∩-shaped) parabola → modelled with a 

quadratic polynomial. 

The peak is around 50 layers, and then accuracy declines. 

So, the general form is: Val-Accuracy = −𝑎𝐿2 + 𝑏𝐿 + 𝑐 ------

------- (1), where a < 0 

Using regression, the estimated equation of the curve is  

Val-Accuracy ≈ −0.000015𝐿2 + 0.0016𝐿 + 0.625  ------- 

(5) 

For the val-loss function, we use: Val-loss = 𝑎𝐿2 + 𝑏𝐿 + 𝑐 ---

---------- (3), where a > 0 

Estimated equation (fitting the curvature): Val-loss ≈ 

0.00002𝐿2 − 0.002𝐿 + 1.28 ---------------- (6) 

Metrics 

Table 7 shows the actual and predicted val-accuracy of EfficientNetB0 

Layers  Actual val-accuracy Predicted val-accuracy 

0 0.6243 0.6250 

10 0.6635 0.6395 

20 0.6662 0.6510 

50 0.6642 0.6675 

100 0.6452 0.6350 

120 0.6352 0.6010 

150 0.6491 0.5275 

237 0.5867 0.1617 

 

The Mean Squared Error (MSE) is 0.0247, and the Mean 

Absolute Error (MAE) is 0.0793. This means the model's 

predictions are, on average, quite close to the actual values. 

MSE shows how far off the predictions are by squaring the 

errors, so it gives more weight to bigger mistakes. MAE is 

easier to understand, showing that the predictions are off by 

about 0.0793 on average. 

To determine the number of layers that gives the optimal 

solution, we substitute the layers from 0 to 237 into the Val-

accuracy equation. The easiest way to do this is a run a 

Python code with input [0, 1, 2... 237] and obtain the 

corresponding Val-accuracy.  Note, EfficientNetB0 has 237 

layers. The outcome shows that the optimum accuracy is 

obtained at layer 54 at Val-accuracy of 0.667660. 

Unfreezing the top 54 layers is approximately 22.7% of 

the 237 layers 

 

5.2.3. Interpreting the VGG16 results 

 
Figure 13 shows the validation accuracy against the unfrozen layer for the 

VGG16 experiments 
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Figure 14 shows the validation loss against the unfrozen layer for the VGG16 
experiments 

Using polynomial regression, the  

Val-Accuracy ≈ −0.0007𝐿2 + 0.0306𝐿 + 0.62 ---------- (7) 

The Val-Loss ≈ 0.0018𝐿2 − 0.056𝐿 + 1.15 -------------- (8) 

 

Metrics 

 
Table 8 shows the actual and predicted Val-accuracy of VGG16 

Layers  Actual Val-accuracy  Predicted Val-accuracy 

0 0.6217 0.6200 

10 0.8136 0.8560 

14 0.8361 0.9112 

17 0.8315 0.9379 

18 0.8373 0.9440 

 

The Mean Squared Error (MSE) is 0.00603 and the Mean 

Absolute Error (MAE) is 0.06646, indicating that the 

predicted Val-accuracy deviate from the actual values by 

about 0.603% in accuracy. 

 

To obtain the number of layer that gives the optimal Val-

accuracy, we substitute the 18 layers of the VGG16 into the 

Val-accuracy equation −0.0007𝐿2 + 0.0306𝐿 + 0.62 . The 

easiest way to do this is to write a Python code with input [0, 

1,2,3,4...18] and the Val-accuracy as the corresponding 

output. The outcome shows that the optimal accuracy is 

obtained at layer 18, which gives a Val-accuracy of 0.944 

 

5.2.4. The General Equation  

 

There are some challenges with the experimental approach. 

The nature, size, quantity, robustness of the dataset; and the 

hyperparameters enabled can impact the validation accuracy 

which in turn can affect the regression equation [30]. 

Therefore, it becomes quite challenging to have equations for 

different kinds of scenarios. One way to resolve this is to 

deduce a general equation which considers most of the 

parameters and hyperparameters that may affect the accuracy 

of the models. A simplified estimated equation for this 

problem must consider:  

 Number of unfrozen layers (L) 

 Model size (N, often total number of layers or 

parameters) 

 Number of epochs (E) 

 Sometimes, dataset size 

 Constants or learnable coefficients like α (alpha), β 

(beta), γ (gamma), etc.  

The general equation is given as  

𝑉𝑎𝑙 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∝ −
𝛽𝐿2

𝑁
+ 𝛾log (𝐸) ----------- (9) 

Where  

 α = theoretical max accuracy (dataset-architecture 

upper bound) 

 β = penalty for unfreezing layers (controls 

overfitting or instability) 

 L = number of unfrozen layers 

 N = total number of layers in the network (e.g., 152 

for ResNet152) 

 γlog(E) = gain from training epochs, with 

diminishing returns 

This equation captures three important trends about fine-

tuning processes 

1. Performance improves with increasingly 

logarithmically time (increasing number of epochs) 

2. Unfreezing too many layers hurts performance 

especially when processing limited and small sized 

dataset. This is reflected by the term  

3. Accuracy is capped by an architecture- and data-

dependent ceiling α 

The equation assumes that: 

1. You’re using transfer learning (pretrained models) 

2. You’re fine-tuning on a dataset with limited size 

3. You want to control training time and overfitting 

This formula can be extended by looking at the dataset 

complexity factor or the number of training samples  and the 

number of model parameters P 

𝑉𝑎𝑙 − 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = ∝ −
𝛽𝐿2

𝑁
+ 𝛾 log(𝐸) + 𝛿 log(𝑆) +

𝜌log (𝑃) -------------------- (9) 

 

5.3. Grad-CAM Results and Interpretations 

Figure 13 and 14 shows the Grad-CAM result for the 

EfficientNetB0 trained on 10% of the Food-101 database. It 

shows how Grad-CAM progressively focuses its attention on 

the relevant part of the images.  
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Figure 15 shows the Grad-CAM visualization learning from layer1 to layer 4

Figure 16 shows the Grad-CAM visualization learning from layer1 to layer 4 

 

i.The pizza image: The image on the far left displays 

an original sample from the Food-101 dataset. The 

image captures the pizza and its surrounding items.  

ii.Layer 1: At this level, the model output a broad and 

diffused image. The activation is minimal and 

scattered, with only small patches, showing random 

spots across the pizza. This reveals that the layer 1 of 

the EfficientNetB0 model captures the edges, 

textures and colors.  

iii.Layer 2: In this layer, the network concentrates more 

with the region of the pizza, but still captures the 

surroundings. This shows that the model could 

differentiate between the pizza and the background 

using more complex features such as shapes or small 

patterns. 

iv.Layer3: At this level, the model focuses on the 

pizza. High activations are now clearly visible across 

the center of the pizza, ignoring most of the 

background. This indicates that the layer is 

beginning to recognize mid-level features relevant to 

the pizza class, such as crust edges or topping 

distribution. 

v.Layer 4: This layer intensely focusses on the pizza, 

especially its key components like toppings. The 

background is almost entirely ignored. This indicates 

that the model captures high-level, task-relevant 

features of the pizza at this level. These features are 

what the model use to make its final predictions  

From the Grad-CAM image output, the model learns the 

features of the images at stages three and four. To obtain 

higher accuracy without overfitting, the deeper layers (those 

closer to the output, specifically Layer 3 and Layer 4) should 

be unfrozen as these contain mid-level and high-level class-

specific features. 

EfficientNetB0 has seven blocks (block1a, block2a,..., 

block7a) and the deeper blocks are the later blocks (6a, 6b, ..., 

7a) [8]. The table below shows the number of blocks and the 

corresponding layer range 

Table 8 shows the blocks and the corresponding number of layers of the 

EfficientNetB0 

Block Name Count of layers Layer index range 

Block1a 14 layers  2 – 15  

Block 2a 16 layers 16 – 31  

Block 2b 14 layers  32 – 45  

Block 3a 17 layers  46 - 62 

Block 3b 14 layers 63 – 76  

Block 4a 16 layers  77 – 92  

Block 4b 14 layers 93 – 106  

Block 5a 16 layers  107 – 122  

Block 5b 14 layers 123 – 136  

Block 5c 14 layers 137 – 150  

Block 6a 17 layers 151 – 167  

Block 6b 16 layers  168 – 183  

Block 6c 16 layers  184 – 199  

Block 6d 16 layers  200 – 215 

Block 7a 21 layers 217 – 236  
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How many layers fall within the block 6a, 6b and 7a? From 

the Table, we have 17 layers + 16 layers + 21 layers making a 

total of 54 layers. This shows that the 54 layers closest to the 

output should be unfrozen, which is approximately 23% of 

the 237 layers  

To effectively unfreeze only 6a, 6b, and 7a blocks, the Python 

code below print out the exact layers and confirm the count. 

Then, the number of layers indicated can then be unfrozen to 

obtain the optimal accuracy.  

from tensorflow.keras.applications import EfficientNetB0 

model = EfficientNetB0(weights='imagenet', 

include_top=False) 

for i, layer in enumerate(model.layers): 

    if 'block6a' in layer.name or 'block6b' in layer.name or 

'block7a' in layer.name: 

        print(f"{i}: {layer.name}") 

Note that blocks 6c and 6d are not unfrozen. The reason is 

that deeper layers like Layer 3 and Layer 4 focused 

specifically on the pizza, especially in Layer 4, indicating 

high-level, class-specific feature detection, which happens at 

blocks 6a, 6b, and 7a. Fine-tuning more layers will increase 

training time, risk overfitting, and require more resource 

usage. Since Grad-CAM didn’t show significant activation in 

6c and 6d, unfreezing them may add unnecessary complexity, 

and may not have any impact on performance. Researchers 

should unfreeze blocks 6c and 6d when the Grad-CAM shows 

significant, task-specific activations in those layers, and when 

there is a large dataset. Note that this experiment only uses 

10% of the dataset to reduce computational resources and 

save time. As a rule, when working with EfficientNetB0 with 

a small dataset, unfreeze the blocks 6a, 6b, and 7a; however 

for larger datasets, gradually unfreeze the 6a, 6b, 6c, 6d, and 

7a blocks. For each block unfrozen, run the experiment to 

determine the validation accuracy. 

5.4. Comparing the results in the Experimental and Grad-

CAM approach 

In the experiment involving ResNet152, unfreezing 

approximately the top 107 layers, which is approximately 

21% of the 514 layers gives the optimal accuracy. In the same 

vein, in the EfficientNetB0 experiment, unfreezing the top 

22% of the 237 layers gives optimal validation accuracy. 

However, a different result was obtained in the VGG 16 

network, which requires the entire layers to be unfrozen to 

obtain an optimal validation result. The difference in the 

VGG 16 architecture is that it is an extremely lightweight 

architecture that contains only 18 layers.  

 

The Grad-CAM experiment gives similar results to those of 

experimental results. Findings from the Grad-CAM approach 

show that approximately 23% of the EfficientNetB0 gives the 

optimal result. This is the same as the result obtained in 

EfficientNetB0 using an experimental approach 

(approximately 22%). Besides, the result obtained through 

this study perfectly aligns with previous findings [9], [13], 

[14], [15], [30], etc. which established that fine-tuning a few 

top layers increases accuracy, however, unfreezing too many 

layers affects the accuracy. 

 

6. Conclusion 

This study investigated the optimal layers to unfreeze in a 

CNN network to obtain the best validation accuracy. The first 

part of the study conducted a comprehensive literature review 

to identify existing gaps and found that no explicit research 

has been done to determine the optimal number of layers to 

unfreeze in a CNN network for achieving the best validation 

accuracy. A few research established that unfreezing the few 

top layers of a CNN network is likely to increase accuracy. 

Research also established that unfreezing to many layers 

negatively affects validation accuracy, resulting in overfitting, 

but much has not been done to establish the range of optimal 

layers in a CNN network.   

The second part of the study considers CNN architecture and 

expressly explains the fine-tuning processes. The 

methodology section explains the experimental processes and 

the Grad-CAM approach used to determine the optimal 

number of layers. The result sections derive regressive 

equations through the experimental approach and determine 

the MAE and MSE metrics to juxtapose the accuracy of the 

regressive equations. A general equation was deduced. This 

equation considers further hyperparameters that affect the 

optimal number of layers in a CNN network.  

The results obtained through the experimental and Grad-

CAM approaches closely align. The results show that fine-

tuning the top one-fifth of pre-trained layers (between 20% 

and 25%) gives the optimal accuracy. However, VGG16 

requires the entire layers to be unfrozen to obtain optimal 

solution. The reason is because it has only 18 layers. The 

outcome from both approaches also supports previous studies 

which implies that unfreezing a few top layers improves 

validation accuracy. This study expressly concludes that fine-

tuning the top one-fourth layers of a pre-trained model will 

give an approximate training accuracy and validation 

accuracy. At these layers, the loss will also be minimal.  

6.1. Significance of the research 

It’s been quite challenging to obtain the approximate number 

of layers to unfreeze to obtain an optimal solution. Much 

literature has proposed a general rule of thumb but could not 

specify in particular, the fine-tuning depth. This research is 

highly significant as it provides an answer to a long-awaited 

research gap. Besides, researchers, AI and ML experts, data 

analysts, and even computer science students, who work with 

transfer learning do not need to systematically unfreeze 514 

layers in the case of ResNet152 to obtain a fairly accurate 

solution as the approach is computationally expensive and 

time-consuming.  
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6.2. Limitations  

Even though this study deduces an equation for each CNN 

network experimented and a general equation to determine 

the number of layers to unfreeze for most CNN networks, the 

general equations do not consider all hyperparameters that 

might affect the number of layers to unfreeze to obtain the 

optimal solution. Besides, the quantity and quality of the data 

can change everything. For example, when the ResNet152 

model is trained on a small, simple dataset like CIFAR-10, 

the validation accuracy is quite small. This isn't the same 

result when ResNet152 is trained with a large dataset such as 

Food-101. You’ll get a different result than if you use a larger 

or more complex dataset. Parameters like how balanced the 

classes are, how many images you have, and how clear the 

labels are all affect how many layers you should unfreeze. 

6.3. Future Research  

The experimental method was used to obtain the range of 

layers to fine-tune to obtain optimal solutions. However, three 

CNN networks were only considered (ResNet152, VGG16, 

and EfficientNetB0). Further research can consider more 

CNN networks to corroborate the findings obtained in this 

study. Moreover, the Grad-CAM approach was only done on 

the EfficientNetB0 network. There is a need to investigate if 

the Grad-CAM approach would give similar findings in other 

architecture. Lastly, a more robust study can be done in the 

future to deduce general equations that consider all 

hyperparameters in a CNN network.  
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