SARS-COV-2 Proteins, in Complex with Tirilazad

Authors

  • I.V. Ferrari Dept. of Industrial Engineering, University of Rome Tor Vergata, Rome, Italy
  • M. Di Mario Dept. of Chemical Science and Technologies, University of Rome Tor Vergata, Rome, Italy

Keywords:

Tirilazad, SARS-COV-2

Abstract

In this study, our approach was to carry out a complete investigation of molecular docking analysis with the major SARS-CoV-2 proteins. We analysed more than 6000 drugs, downloaded by the PubChem database. Particular attention, we have focused on Spike Glycoprotein and Main protease 3CLpro Covid-19 proteins, by “Blind docking” method and “Selective docking” procedure, in Ligand Binding site, with AutoDock Vina using Pyrx software. From our results, we have selected Tirilazad against COVID-19. In fact, it reported having an excellent ability to bind both with the “Native Spike Glycoprotein”, with a Binding Energy of -11.8 kcal mol-1, and with the South African (B.1.351) SARS-CoV-2 spike protein variant, with a Binding Energy -10 kcal mol-1. Indeed, in the second case, the docking analysis was evaluated in the active area of three key amino acids belonging to the Spike Protein RBD, responsible for a higher binding with the ACE2 receptor. They are ASN 417, Lys 484, and Tyr 501 respectively. In addition, Tirilazad has shown a Binding energy score of approximately -10.5 kcal mol-1 against SARS-COV-2 Main protease. This has led us to conclude that this drug could be an excellent candidate against Coronavirus (COVID-19) pandemic, even though further in vitro and in vivo studies are needed.

 

References

Zhu, N.; Zhang, D.; Wang, W.; Li, X.; Yang, B.; Song, J.; Zhao, X.; Huang, B.; Shi, W.; Lu, R.; Niu, P.; Zhan, F.; Ma, X.; Wang, D.; Xu, W.; Wu, G.; Gao, G. F.; Tan, and W. “A Novel Coronavirus from Patients with Pneumonia in China, 2019”, New England Journal of Medicine , Vol.382, Issue.8, pp.727–733, 2020, https://doi.org/10.1056/nejmoa2001017.

Chen, N.; Zhou, M.; Dong, X.; Qu, J.; Gong, F.; Han, Y.; Qiu, Y.; Wang, J.; Liu, Y.; Wei, Y.; Xia, J.; Yu, T.; Zhang, X.; and Zhang, L. “Epidemiological and Clinical Characteristics of 99 Cases of 2019 Novel Coronavirus Pneumonia in Wuhan, China: A Descriptive Study”, The Lancet , Vol.395 , Issue. 10223, pp.507–513, 2020, https://doi.org/10.1016/S0140-6736(20)30211-7.

Nobel, Y. R.; Phipps, M.; Zucker, J.; Lebwohl, B.; Wang, T. C.; Sobieszczyk, M. E.; and Freedberg, D. E. “Gastrointestinal Symptoms and Coronavirus Disease 2019: A Case-Control Study From the United States”, Gastroenterology , Vol.159, Issue.1, pp.373-375, 2020, https://doi.org/10.1053/j.gastro.2020.04.017.

Gautier, J. F.; and Ravussin, Y. “A New Symptom of COVID-19: Loss of Taste and Smell. Obesity”, Blackwell Publishing Inc. Vol.28, Issue.5, pp.848, 2020, https://doi.org/10.1002/oby.22809.

Cao, X. “COVID-19: Immunopathology and Its Implications for Therapy”, Nature Reviews Immunology, Vol. 20, Issue.5, pp. 269–270, 2020, https://doi.org/10.1038/s41577-020-0308-3.

Basile, C.; Combe, C.; Pizzarelli, F.; Covic, A.; Davenport, A.; Kanbay, M.; Kirmizis, Di.; Schneditz, D.; van der Sande, F.; and Mitra, S. “Recommendations for the Prevention, Mitigation and Containment of the Emerging SARS-CoV-2 (COVID-19) Pandemic in Haemodialysis Centres” Nephrology Dialysis Transplantation , Vol.35, Issue.5, pp.737–741. https://doi.org/10.1093/ndt/gfaa069.

Sabetkish, N.; and Rahmani, A.” The Overall Impact of COVID ?19 on Healthcare during the Pandemic: A Multidisciplinary Point of View “Health Science Reports, Vol.4, Issue.4, pp.e386,2021, https://doi.org/10.1002/hsr2.386.

González, J. M.; Gomez-Puertas, P.; Cavanagh, D.; Gorbalenya, A. E.; and Enjuanes, L. “A Comparative Sequence Analysis to Revise the Current Taxonomy of the Family Coronaviridae,” Archives of Virology, Vol.148, Issue.11, pp.2207–2235, 2003, https://doi.org/10.1007/s00705-003-0162-1.

Zhu, M. “SARS Immunity and Vaccination, Cell Mol Immunol, Vol. 1, Issue. 3, pp.193-8, 2004.

Kandeel, M.; Ibrahim, A.; Fayez, M.; and Al-Nazawi, M. “From SARS and MERS CoVs to SARS-CoV-2: Moving toward More Biased Codon Usage in Viral Structural and Nonstructural Genes,” Journal of Medical Virology , Vol.92, Issue 6, pp. 660–666, 2020, https://doi.org/10.1002/jmv.25754.

Azhar, E. I.; El-Kafrawy, S. A.; Farraj, S. A.; Hassan, A. M.; Al-Saeed, M. S.; Hashem, A. M.; and Madani, T. A. “Evidence for Camel-to-Human Transmission of MERS Coronavirus”, New England Journal of Medicine, Vol.370, Issue 26, pp.2499–2505,2014, https://doi.org/10.1056/nejmoa1401505.

Ita, K. “Coronavirus Disease (COVID-19): Current Status and Prospects for Drug and Vaccine Development,” Archives of Medical Research. Elsevier Inc, Vol.52, Issue. 1, pp.15–24, 2021,https://doi.org/10.1016/j.arcmed.2020.09.010.

Gil, C.; Ginex, T.; Maestro, I.; Nozal, V.; Barrado-Gil, L.; Cuesta-Geijo, M. Á.; Urquiza, J.; Ramírez, D.; Alonso, C.; Campillo, N. E.; Martinez, A. COVID-19: Drug Targets and Potential Treatments. Journal of Medicinal Chemistry,” American Chemical Society, Vol.63, Issue 21, pp.12359–12386, 2020, https://doi.org/10.1021/acs.jmedchem.0c00606.

Tahir ul Qamar, M.; Alqahtani, S. M.; Alamri, M. A.; and Chen, L. L. “Structural Basis of SARS-CoV-2 3CLpro and Anti-COVID-19 Drug Discovery from Medicinal Plants, Journal of Pharmaceutical Analysis , Vol. 10, Issue. 4, pp. 313–319, 2020, https://doi.org/10.1016/j.jpha.2020.03.009.

Mody, V.; Ho, J.; Wills, S.; Mawri, A.; Lawson, L.; Ebert, M. C. C. J. C.; Fortin, G. M.; Rayalam, and S.; Taval, S.” Identification of 3-Chymotrypsin like Protease (3CLPro) Inhibitors as Potential Anti-SARS-CoV-2 Agents, Communications Biology , Vol.4, Issue.1,pp.1-10, 2021, https://doi.org/10.1038/s42003-020-01577-x.

Beigel, J. H.; Tomashek, K. M.; Dodd, L. E.; Mehta, A. K.; Zingman, B. S.; Kalil, A. C.; Hohmann, E.; Chu, H. Y.; Luetkemeyer, A.; Kline, S.; Lopez de Castilla, D.; Finberg, R. W.; Dierberg, K.; Tapson, V.; Hsieh, L.; Patterson, T. F.; Paredes, R.; Sweeney, D. A.; Short, W. R.; Touloumi, G.; Lye, D. C.; Ohmagari, N.; Oh, M.; Ruiz-Palacios, G. M.; Benfield, T.; Fätkenheuer, G.; Kortepeter, M. G.; Atmar, R. L.; Creech, C. B.; Lundgren, J.; Babiker, A. G.; Pett, S.; Neaton, J. D.; Burgess, T. H.; Bonnett, T.; Green, M.; Makowski, M.; Osinusi, A.; Nayak, S.; and Lane, H. C. “Remdesivir for the Treatment of Covid-19”, New England Journal of Medicine ,Vol.383, Issue.19, pp. 1813–1826, 2020, https://doi.org/10.1056/nejmoa2007764.

Boulware, D. R.; Pullen, M. F.; Bangdiwala, A. S.; Pastick, K. A.; Lofgren, S. M.; Okafor, E. C.; Skipper, C. P.; Nascene, A. A.; Nicol, M. R.; Abassi, M.; Engen, N. W.; Cheng, M. P.; LaBar, D.; Lother, S. A.; MacKenzie, L. J.; Drobot, G.; Marten, N.; Zarychanski, R.; Kelly, L. E.; Schwartz, I. S.; McDonald, E. G.; Rajasingham, R.; Lee, T. C.; and Hullsiek, K. H. “A Randomized Trial of Hydroxychloroquine as Postexposure Prophylaxis for Covid-19,” New England Journal of Medicine , Vol.383, Issue.6, pp. 517–525, 2020, https://doi.org/10.1056/nejmoa2016638.

Maskin, L. P.; Olarte, G. L.; Palizas, F.; Velo, A. E.; Lurbet, M. F.; Bonelli, I.; Baredes, N. D.; and Rodríguez, P. O. “High Dose Dexamethasone Treatment for Acute Respiratory Distress Syndrome Secondary to COVID-19: A Structured Summary of a Study Protocol for a Randomised Controlled Trial, Trials , Vol.21, Issue.1, pp.1-3,2020https://doi.org/10.1186/s13063-020-04646-y.

Morales-Ortega, A.; Bernal-Bello, D.; Llarena-Barroso, C.; Frutos-Pérez, B.; Duarte-Millán, M. Á.; García de Viedma-García, V.; and Farfán-Sedano, A. I.; Canalejo-Castrillero, E.; Ruiz-Giardín, J. M.; Ruiz-Ruiz, J.; San Martín-López, J. V. Imatinib for COVID-19: A Case Report. Clinical immunology (Orlando, Fla.) , Vol. 218, pp.108518,2020, https://doi.org/10.1016/j.clim.2020.108518.

Musarrat, F.; Chouljenko, V.; Dahal, A.; Nabi, R.; Chouljenko, T.; Jois, S. D.; and Kousoulas, K. G. “The Anti-HIV Drug Nelfinavir Mesylate (Viracept) Is a Potent Inhibitor of Cell Fusion Caused by the SARSCoV-2 Spike (S) Glycoprotein Warranting Further Evaluation as an Antiviral against COVID-19 Infections,” Journal of Medical Virology, Vol.92, Issue.10, pp. 2087–2095, 2020, https://doi.org/10.1002/jmv.25985.

Thachil, J. “The Versatile Heparin in COVID-19”, Journal of Thrombosis and Haemostasis. Blackwell Publishing Ltd, pp 1020–1022, 2020, https://doi.org/10.1111/jth.14821.

Boretti, A.” Favipiravir Use for SARS CoV-2 Infection,” Pharmacological Reports , Vol.72, Issue.6, pp. 1542–1552, 2020, https://doi.org/10.1007/s43440-020-00175-2 .

Zhu, Z.; Lu, Z.; Xu, T.; Chen, C.; Yang, G.; Zha, T.; Lu, J.; and Xue, Y. “Arbidol Monotherapy Is Superior to Lopinavir/Ritonavir in Treating COVID-19,” Journal of Infection , Vol. 81, Issue.1 , pp. e21–e23,2020, https://doi.org/10.1016/j.jinf.2020.03.060.

Hippensteel, J. A.; Lariviere, W. B.; Colbert, J. F.; Langouët-Astrié, C. J.; and Schmidt, E. P. “Heparin as a Therapy for COVID-19: Current Evidence and Future Possibilities,” Am J Physiol Lung Cell Mol Physiol , Vol.319, pp. 211–217, 2020, https://doi.org/10.1152/ajplung.00199.2020.-Coronavirus.

Cao, B.; Wang, Y.; Wen, D.; Liu, W.; Wang, J.; Fan, G.; Ruan, L.; Song, B.; Cai, Y.; Wei, M.; Li, X.; Xia, J.; Chen, N.; Xiang, J.; Yu, T.; Bai, T.; Xie, X.; Zhang, L.; Li, C.; Yuan, Y.; Chen, H.; Li, H.; Huang, H.; Tu, S.; Gong, F.; Liu, Y.; Wei, Y.; Dong, C.; Zhou, F.; Gu, X.; Xu, J.; Liu, Z.; Zhang, Y.; Li, H.; Shang, L.; Wang, K.; Li, K.; Zhou, X.; Dong, X.; Qu, Z.; Lu, S.; Hu, X.; Ruan, S.; Luo, S.; Wu, J.; Peng, L.; Cheng, F.; Pan, L.; Zou, J.; Jia, C.; Wang, J.; Liu, X.; Wang, S.; Wu, X.; Ge, Q.; He, J.; Zhan, H.; Qiu, F.; Guo, L.; Huang, C.; Jaki, T.; Hayden, F. G.; Horby, P. W.; Zhang, D.; and Wang, C. “A Trial of Lopinavir–Ritonavir in Adults Hospitalized with Severe Covid-19,” New England Journal of Medicine , Vol. 382, Issue.19, pp.1787–1799, 2020, https://doi.org/10.1056/nejmoa2001282.

Wegner, J. K., Sterling, A., Guha, R., Bender, A., Faulon, J. L., Hastings, J. and Willighagen, E. “Cheminformatics”, Communications of the ACM, Vol. 55, Issue.11, pp.65-75, 2012.

Trott, O., and Olson, A. J. “AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading”, Journal of computational chemistry, Vol.31, Issue.2, pp.455-461, 2010.

Dallakyan, S., and Olson, A. J. “Small-molecule library screening by docking with PyRx,”In Chemical biology pp. 243-250, Humana Press, New York, NY, 2015.

Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., and Moreno, E. “AMDock: a versatile graphical tool for assisting molecular docking with Autodock Vina and Autodock4,” Biology direct, Vol. 15, Issue.1, pp. 1-12,2020.

Jejurikar, B. L., and Rohane, S. H.” Drug Designing in Discovery Studio”, Asian Journal of Research in Chemistry, Vol. 14, Issue.2, pp.135-138, 2021.

Wallace, A. C., Laskowski, R. A., AND Thornton, J. M.” LIGPLOT: a program to generate schematic diagrams of protein-ligand interactions,” Protein engineering, design and selection, Vol. 8, Issue.2 , pp. 127-134, 1995.

Bracken, M. B., Shepard, M. J., Holford, T. R., Leo-Summers, L., Aldrich, E. F., Fazl, M., and Young, W. “Methylprednisolone or tirilazad mesylate administration after acute spinal cord injury: 1-year follow up: results of the third National Acute Spinal Cord Injury randomized controlled trial”, Journal of neurosurgery, Vol.89, Issue.5, pp.699-706,1998.

Schmid-Elsaesser, R., Zausinger, S., Hungerhuber, E., Baethmann, A., and Reulen, H. J. “ Neuroprotective effects of combination therapy with tirilazad and magnesium in rats subjected to reversible focal cerebral ischemia. Neurosurgery, Vol. 44, Issue.1, pp.163-171,1998.

Downloads

Published

2022-02-28

How to Cite

[1]
I. Ferrari and M. D. Mario, “SARS-COV-2 Proteins, in Complex with Tirilazad”, Int. J. Sci. Res. Comp. Sci. Eng., vol. 10, no. 1, pp. 19–25, Feb. 2022.

Issue

Section

Research Article